
No

Foreword by Jeremy Keith

RESPONSIVE
WEB DESIGN

Ethan Marcotte

S E C O N D E D I T I O N

Brief books for people who make websites

4

RESPONSIVE
WEB DESIGN

Ethan Marcotte

S E C O N D E D I T I O N

MORE FROM THE A BOOK APART LIBRARY

HTML5 for Web Designers
Jeremy Keith

CSS3 for Web Designers
Dan Cederholm

The Elements of Content Strategy
Erin Kissane

Designing for Emotion
Aarron Walter

Mobile First
Luke Wroblewski

Design Is a Job
Mike Monteiro

Content Strategy for Mobile
Karen McGrane

Just Enough Research
Erika Hall

Sass for Web Designers
Dan Cederholm

On Web Typography
Jason Santa Maria

You’re My Favorite Client
Mike Monteiro

Responsible Responsive Design
Scott Jehl

Copyright © 2014 Ethan Marcotte
First edition published 2011
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Managing Director: Katel LeDû
Technical Editor: Anna Debenham
Copyeditor: Sally Kerrigan
Compositor: Rob Weychert
Ebook Production: India Amos

Editor, first edition: Mandy Brown
Technical Editor, first edition: Dan Cederholm
Copyeditor, first edition: Krista Stevens
Compositor, first edition: Neil Egan

ISBN: 978-1-9375571-9-5

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

http://abookapart.com

TABLE OF CONTENTS

	 1 	 Introduction

chapter 1	 3 	 Our Responsive Web
chapter 2	 1 7 	 The Flexible Grid
chapter 3	 4 5 	 Flexible Images
chapter 4	 67 	 Media Queries
chapter 5	 1 0 8 	 Becoming Responsive

	 1 44 	 Acknowledgements

	 1 46 	 Resources

	 1 4 8 	 References

	 1 5 2 	 Index

FOREWORD

LANGUAGE HAS magical properties. The word “glamour”—
which was originally a synonym for magic or spell-casting—has
its origins in the word “grammar.” Of all the capabilities of lan-
guage, the act of naming is the most magical and powerful of all.

The short history of web design has already shown us the
transformative power of language. Jeffrey Zeldman gave us
the term “web standards” to rally behind. Jesse James Garrett
changed the nature of interaction on the web by minting the
word “Ajax.”

When Ethan Marcotte coined the term “responsive web
design” he conjured up something special. The technologies
existed already: fluid grids, flexible images, and media queries.
But Ethan united these techniques under a single banner, and in
so doing changed the way we think about web design.

Ethan has a way with words. He is, of course, the perfect
person to write a book on responsive web design. But he has
done one better than that: he has written the book on responsive
web design.

If you’re hoping for a collection of tricks and tips for add-
ing a little bit of superficial flair to the websites that you build,
then keep looking, my friend. This little beauty operates at a
deeper level.

When you’ve finished reading this book (and that won’t take
very long) take note of how you approach your next project. It’s
possible that you won’t even notice the mind-altering powers
of Ethan’s words, delivered, as they are, in his light-hearted, en-
tertaining, sometimes downright hilarious style; but I guarantee
that your work will benefit from the prestidigitation he is about
to perform on your neural pathways.

Ethan Marcotte is a magician. Prepare to be spellbound.

—Jeremy Keith

 	 Introduction	 1	

INTRODUCTION

OH. HI. It’s great to see you again.
In this latest edition of Responsive Web Design, you’ll find

a whole host of changes: updated figures, fixed links, and a
truckload of little corrections.

But, ultimately, the three main ingredients of a responsive
design—flexible grids, fluid images, and media queries—are
as relevant today as they were when I first coined the phrase.
So while the structure of the book hasn’t changed that much,
I think you’ll agree there are a lot of significant edits through-
out. In the years since this book was first published, designers,
agencies, and large organizations alike have been producing
stellar responsive designs, pushing the concept forward. At
every relevant opportunity, I’ve included their work, writings,
and research.

One thing hasn’t changed, though. You see, when I wrote an
article about something called responsive web design (http://
bkaprt.com/rwd2/0/) a few years ago, I didn’t think for a second I’d
be lucky enough to write a book on the topic. (Much less write
another edition of it.) In other words: I’m still very humbled by
the attention the idea of responsive design has gotten. But I’m
also thankful because, well, that attention’s due to you. Thanks
for asking such great questions over email, for the feedback
on Twitter, for recommending the book to your friends, and
for building such fantastic responsive sites. This new edition
wouldn’t have been possible without your help. Even if you’re
reading this book for the first time, your interest in responsive
design helped make this edition possible.

Thank you so, so much for reading my book. As I said the
last time around, I can’t wait to see what you’ll make with it.

—Ethan

PS: The line about the pirate hat has not been edited in any way,
as it was contributed by my wife, who continues to be much
funnier and smarter than I am.

http://bkaprt.com/rwd2/0/
http://bkaprt.com/rwd2/0/

 	 Our Responsive Web	 3	

OUR RESPONSIVE
WEB1

Something there is that doesn’t love a wall . . . ”
—Robert Frost, “Mending Wall”

AS I BEGIN writing this book, I realize I can’t guarantee you’ll
read these words on a printed page, holding a tiny paperback in
your hands. Maybe you’re sitting at your desk with an electronic
copy of the book up on your screen. Perhaps you’re on your
morning commute, tapping through pages on your phone, or
swiping along on a tablet. Or maybe you don’t even see these
words as I do: maybe your computer is simply reading this
book aloud.

Ultimately, I know so little about you. I don’t know how
you’re reading this. I can’t.

Publishing has finally inherited one of the web’s central char-
acteristics: flexibility. Book designer and publisher Craig Mod
believes that his industry is quickly entering a “post-artifact”
phase (http://bkaprt.com/rwd2/1/), that the digital age is revising
our definition of what constitutes a “book.”

“

http://bkaprt.com/rwd2/1/

	 4 	 RESPONSIVE WEB DESIGN

Of course, web designers have been grappling with this for
some time. In fact, our profession has never had an “artifact” of
its own. At the end of the day, there isn’t any thing produced by
designing for the web, no tangible object to hold, to cherish, to
pass along to our children. But despite the oh-so-ethereal nature
of our work, the vocabulary we use to talk about it is anything
but: “masthead,” “whitespace,” “leading,” even the much-derided
“fold.” Each of those words is directly inherited from print de-
sign: just taken down from the shelf, dusted off, and re-applied
to our new, digital medium.

Some of that recycling is perfectly natural. We’re creatures of
habit, after all: as soon as we move into a new city, or start a new
job, we’re mapping previous experiences onto the new, more

fig 1.1: The canvas, even a blank one, provides a boundary for an artist’s work. (Photo by
Cara St.Hilaire: http://bkaprt.com/rwd2/2/)

http://bkaprt.com/rwd2/2/

 	 Our Responsive Web	 5	

foreign one, using them to gradually orient ourselves. And since
the web is a young medium, it’s only natural to borrow some
terms from what we know: graphic design provides us with a
rich history that spans centuries, and we’d be remiss not to use
its language to help shape our industry.

But our debt to print goes much deeper than language. In
fact, there’s another concept we’ve borrowed, one we might not
acknowledge all that often: the canvas (fig 1.1).

In every other creative medium, the artist begins her work by
selecting a canvas. A painter chooses a sheet of paper or fabric to
work on; a sculptor might select a block of stone from a quarry.
Regardless of the medium, choosing a canvas is a powerful,
creative act: before the first brush stroke, before striking the
chisel, the canvas gives the art a dimension and shape, a width
and a height, establishing a boundary for the work yet to come.

On the web, we try to mimic this process. We even call it the
same thing: we create a “canvas” in our favorite image editor, a
blank document with a width and height, with dimension and
shape. The problem with this approach is that we’re one step
removed from our actual canvas: the browser window, and all
of its inconsistencies and imperfections (fig 1.2). Because let’s
face it: once they’re published online, our designs are immedi-
ately at the mercy of the people who view them—to their font

fig 1.2: The browser window, our true canvas. (For better or worse.)

	 6 	 RESPONSIVE WEB DESIGN

settings, to the color of their displays, to the shape and size of
their browser windows.

So in the face of all that uncertainty, that flexibility, we begin
by establishing constraints: we set our type in pixels, or create
fixed-width layouts that assume a minimum screen resolution.
Establishing those constraints is a bit like selecting a canvas—
they give us known parameters to work from, certainties that
help quarantine our work from the web’s inherent flexibility.

But the best thing—and often, the worst thing—about the
web is that it defies easy definition. If I were feeling especially
bitter, I’d even go so far as to say it revels in its ability to shrug
off whatever constraints we place around it. And the parameters
we place on our designs are no different: they’re easily broken.
If a browser drops even slightly below our expected minimum
width (fig 1.3), a site’s visitor might find her reading experience

fig 1.3: Deviating slightly from our “ideal” parameters can negatively impact the user…

 	 Our Responsive Web	 7	

is altered by a horizontal scrollbar and clipped content. But our
businesses and clients could be affected as well (fig 1.4): by rely-
ing on a minimum screen resolution, the placement of critical
links or elements can be incredibly fragile, clipped by a viewport
that obeys the user’s preferences, not ours.

FASTEN THOSE SEATBELTS
More than a decade ago, John Allsopp wrote “A Dao of Web
Design” (http://bkaprt.com/rwd2/3/), an article that, if you
haven’t read it, you should absolutely check out now. (Seriously.
I’ll wait.) It’s easily my favorite essay about designing for the
web, and it’s just as relevant today as it was when it was first
written. John argues that

[t]he control which designers know in the print medium, and
often desire in the web medium, is simply a function of the
limitation of the printed page. We should embrace the fact that
the web doesn’t have the same constraints, and design for this
flexibility. But first, we must “accept the ebb and flow of things.”

Now, John was writing during the web’s early years, a period
of transition when designers transferred print-centered design
principles onto this young, new medium. But much of what he

fig 1.4: …or our businesses and clients. (What’s a “reg,” you ask? That’s the “Register Now”
link, hidden from view.)

http://bkaprt.com/rwd2/3/

	 8 	 RESPONSIVE WEB DESIGN

wrote in the spring of 2000 still rings true today. Because the web
has never felt more in flux, more variable than it does right now.

After all, we’ve been entering our own transition period for
some time. We’re now faced with a browser landscape that’s
become almost entirely untethered from the desktop, with de-
vices becoming smaller and larger simultaneously. Small-screen
devices are quickly becoming the dominant form of web ac-
cess (http://bkaprt.com/rwd2/4/), while modern game consoles
have made a widescreen, television-centric web more readily
accessible (http://bkaprt.com/rwd2/5/). Smart televisions allow
owners to browse the web from the comfort of their couch,
while web-connected, wearable gadgets are garnering significant
interest. And tablet computing has become wildly popular in the
past few years, presenting us with a mode of web access that is
neither fully “mobile” nor “desktop,” but somewhere in between.

The long and short of it is that we’re designing for more de-
vices, more input types, more resolutions than ever before. The
web has moved beyond the desktop, and it’s not turning back.

Unfortunately, our early attempts at designing beyond the
desktop have felt pretty similar to our old approaches, applying
constraints in the face of uncertainty. A few months ago, a friend
emailed me a link to an article she’d just read on her phone:

http://mobile.seattletimes.com/story/today/2023429038/

See the word mobile in the link? The site’s owners had quar-
antined the “mobile experience” on a separate URL, assum-
ing it would only ever be viewed on a narrow, handheld
screen. But whenever that link is shared on Twitter, Facebook,
or via email, visitors will be locked into that small-screen-
friendly view, regardless of the device they use to read it. And
speaking for myself, the reading experience was, well, awful on
a desktop browser.

That’s not to say that mobile websites are inherently flawed,
or that there aren’t valid business cases for creating them. But
I do think fragmenting our content across different “device-
optimized” experiences is a losing proposition, or at least an
unsustainable one. As the past few years have shown us, we

http://bkaprt.com/rwd2/4/
http://bkaprt.com/rwd2/5/
http://mobile.seattletimes.com/story/today/2023429038/

 	 Our Responsive Web	 9	

simply can’t compete with the pace of technology. Are we really
going to create a custom experience for every new browser or
device that appears?

And if not, what’s the alternative?

RESPONSIVE ARCHITECTURE
I’ve been an amateur fan of architecture for as long as I can
remember. And as a web designer, there’s something appealing
about the number of constraints that architects seem to enjoy:
from sketch to schematic, from foundation to façade, every step
of the architectural process is more permanent than the one
that preceded it. In Parentalia, the English architect Christopher
Wren wrote that “architecture aims at eternity,” and there’s
something to that: an architect’s creative decisions will stand
for decades, perhaps centuries.

After a day spent cursing at Internet Explorer, that kind of
constancy sounds really, really nice.

But in recent years, a relatively new design discipline called
“responsive architecture” has been challenging some of the
permanence at the heart of the architectural discipline. It’s a
very young discipline, but this more interactive form has already
manifested itself in several interesting ways.

Artists have experimented with surfaces that react to your
voice with a music of their own (http://bkaprt.com/rwd2/6/),
and with living spaces that can reform themselves to better fit
their occupants (http://bkaprt.com/rwd2/7/). One company has
produced “smart glass technology” that can become opaque once
a room’s occupants reach a certain density threshold, affording
them an additional layer of privacy (fig 1.5). And by combin-
ing tensile materials and embedded robotics, a German design
consultancy has created a “wall” that can bend and flex as people
approach it, potentially creating more or less space as the size
of the crowd requires (fig 1.6).

Rather than creating spaces that influence the behavior of
people that pass through them, responsive designers are inves-
tigating ways for a piece of architecture and its inhabitants to
mutually influence and inform each other.

http://bkaprt.com/rwd2/6/
http://bkaprt.com/rwd2/7/

	 10 	 RESPONSIVE WEB DESIGN

THE WAY FORWARD
What’s fascinating to me is that architects are trying to overcome
the constraints inherent to their medium. But web designers,
facing a changing landscape of new devices and contexts, are
now forced to overcome the constraints we’ve imposed on the
web’s innate flexibility.

We need to let go.
Rather than creating disconnected designs, each tailored to

a particular device or browser, we should instead treat them as
facets of the same experience. In other words, we can craft sites
that are not only more flexible, but that can adapt to the media
that renders them.

In short, we need to practice responsive web design. We
can embrace the flexibility inherent to the web, without sur-
rendering the control we require as designers. All by embedding
standards-based technologies in our work, and by making a
slight change in our philosophy toward online design.

fig 1.5: Now you see it, now you don’t: smart glass can be configured to become opaque
automatically (http://bkaprt.com/rwd2/8/).

http://bkaprt.com/rwd2/8/

 	 Our Responsive Web	 11	

The ingredients

So what does it take to create a responsive design? Speaking pure-
ly in terms of front-end layout, it takes three core ingredients:

1.	A flexible, grid-based layout,
2.	Flexible images and media, and
3.	Media queries, a module from the CSS3 specification.

In the next three chapters, we’ll look at each in turn—the flexible
grid, fluid images and media, and CSS3 media queries—creating
a more flexible, more responsive approach to designing for the
web. As we do so, we’ll have created a design that can adapt to
the constraints of the browser window or device that renders it,
creating a design that almost responds to the user’s needs.

And here’s the thing: as you work on your first responsive
design, you’re going to be in great company. Sites from nearly ev-
ery industry have begun designing responsively, and stunningly

fig 1.6: It doesn’t just make for an attractive art installation. This wall can actually detect
your presence, and reshape itself to respond to your proximity (http://bkaprt.com/rwd2/9/).

http://bkaprt.com/rwd2/9/

	 12 	 RESPONSIVE WEB DESIGN

so: from personal sites (fig 1.7) to major, content-rich publica-
tions (fig 1.8), from e-commerce storefronts (fig 1.9) to media-
heavy sites (fig 1.10). Each is using flexible grids, flexible media,
and media queries to create sites that aren’t optimized solely for
“mobile,” “tablet,” or “desktop,” but are accessible—and beauti-
ful!—regardless of the size of your screen.

In other words, it’s a great time to be a responsive web designer.
So: let’s dive in! But before we do, I should probably come

clean: I’m a bit of a science fiction nut. I love me some laser
pistols, androids, and flying cars, as well as movies and televi-
sion shows containing copious amounts thereof. And I don’t
much care about the quality of said shows and movies, honestly.
Whether directed by Kubrick or sporting a budget lower than

fig 1.7: Many designers—including folks like Frank Chimero (http://frankchimero.com/),
Trent Walton (http://trentwalton.com/), and Meagan Fisher (http://owltastic.com/)—are
using responsive design to showcase their work, and tell stories that look beautiful on
any screen.

http://frankchimero.com/
http://trentwalton.com/
http://owltastic.com/

 	 Our Responsive Web	 13	

what I paid for lunch, I’ll watch it: just make sure there’s at least
one rocket ship, and I’m happy.

In all the sci-fi I’ve watched, good or bad, there’s a narrative
device that genre writers really seem to love: the secret robot.
I’m sure you’ve come across yarns like this before. They always
start with a plucky band of adventurers trying to overcome some
faceless evil, lead by some upstanding hero type, armed with
pithy one-liners and/or steely resolve. But lurking somewhere
within their ranks is . . . a secret robot. (Cue ominous music.) This
devious, devilish device is an unfeeling being, wrought from
cold steel and colder calculations, but made to look like a hu-
man, and it has a decidedly nefarious purpose: to take our band
of heroes down from the inside.

fig 1.8: Publishers like Time.com and The Boston Globe have launched full responsive
redesigns, while the responsive sites for BBC News and The Guardian are in public beta.

http://www.time.com/

	 14 	 RESPONSIVE WEB DESIGN

The revelation of the secret robot is where the story gets most
of its drama. You know the hero, and you know the robotic spy,
sure. But among the rest of the characters, you’re always left
asking yourself: who is, and who isn’t, a robot?

Personally, I’ve never understood why this is so hard. Me, I
miss the days of Johnny 5 and C-3PO, when you knew a robot by
just looking at it, with none of this “skulking around in synthetic
skin” nonsense. So I’ve taken matters into my own hands: to
clear up some of this confusion, I’ve designed a simple little site
called “Robot or Not” (fig 1.11). It’s intended to help us identify
who exactly is, and is not, a robot. To help us better tell fleshy
friend from ferrous foe.

Okay, maybe I’m the only one who has this problem.

fig 1.9: From Coop (http://coop.se/) to Walmart.ca, from Skinny Ties (http://skinnyties
.com/) to Expedia’s responsive homepage (http://expedia.com/), e-commerce sites both
large and small are designing responsively.

http://coop.se/
http://www.walmart.ca/
http://skinnyties.com/
http://skinnyties.com/
http://expedia.com/

 	 Our Responsive Web	 15	

But regardless of how useful this site will actually be, we’ll use
its modest little design to demonstrate exactly how a responsive
site is built. Over the next few chapters, we’ll be developing
Robot or Not together, using flexible grids, flexible images, and
media queries.

Now, maybe you’re not one for suspense. Or, more likely,
maybe you’re already tired of hearing me blather on at length,
and just want to see the finished product. If that’s the case, then
simply point your browser to http://responsivewebdesign.com/
robot/, and feel free to kick the tires a bit. What’s more, the code
is available for download at http://bkaprt.com/rwd2/10/, if you’d
like to play along at home.

Still here? Great. Let’s get started.

fig 1.8: Disney’s corporate site (http://disney.com/) features an impressive amount of video
in a responsive design, while the site promoting electronic duo George & Jonathan (http://
www.georgeandjonathan.com/) is an immersive—and responsive!—experience.

http://responsivewebdesign.com/robot/
http://responsivewebdesign.com/robot/
http://bkaprt.com/rwd2/10/
http://disney.com/
http://www.georgeandjonathan.com/
http://www.georgeandjonathan.com/

	 16 	 RESPONSIVE WEB DESIGN

FIG 1.11: The design for
Robot or Not, in all its
beeping, bitmappy glory.

 	 The Flexible Grid	 17	

WHEN I WAS in college, a professor once told me that every
artistic movement—whether musical, literary, or from the fine
arts—could be seen as a response to the one that preceded it.
Filmmakers of the sixties produced Bonnie and Clyde and The
Graduate to counter such old Hollywood pictures as The Sound
of Music. In Paradise Lost, John Milton actually writes his liter-
ary predecessors into the backdrop of hell—a not-so-subtle
dig at their poetic street cred. And if it weren’t for the tight
arrangements of Duke Ellington and Benny Goodman, Charlie
Parker might never have produced the wild-eyed experimenta-
tion of bebop.

One artist establishes a point; another sets the counterpoint.
And this was especially true for the artists of the Modernist peri-
od in the mid-20th century. The Modernists were looking at the
creative output of their predecessors, the Romantic period of the
late 19th century, with, well, a little disdain. To them, Romantic

THE FLEXIBLE
GRID2

	 18 	 RESPONSIVE WEB DESIGN

art was just laden down with all this stuff—needless, embellished
ornamentation that overwhelmed the artwork, and impeded its
ability to properly communicate with the viewer (fig 2.1).

Now, the Modernist reaction to this took many different
forms, spanning nearly every artistic medium. In painting, this
meant reducing works to experiments in line, shape, and color.
But graphic designers of the period, like Jan Tschichold, Emil
Ruder, and Josef Müller-Brockmann, popularized this concept of
a typographic grid: a rational system of columns and rows, upon
which modules of content could be placed (fig 2.2). And thanks
to designers like Khoi Vinh and Mark Boulton, we’ve managed to
adapt this old concept to the needs of contemporary web design.

In his book Grid Systems in Graphic Design, Müller-Brockmann
referred to this process as “creating a typographic space on
the page,” tailoring the proportions of the grid to the size of a
blank piece of paper. But for a web designer, we’re missing one
key component: the presence of an actual page. Our canvas,
the browser window, can bend and flex to any shape or size,
whether changed at the whim of the reader, or fixed by the
phone or tablet they’re using to view our content.

Often, the first layer of our grid-based layouts looks like this:

fig 2.1: The Modernists heralded a shift away from the embellished realism of William
Blake and Eugène Delacroix, to the more rational approach of Hans Hofmann and Josef
Müller-Brockmann.

 	 The Flexible Grid	 19	

.page {
 width: 960px;
 margin: 0 auto;
}

We create an element in our markup, give it a fixed width in our
CSS, and center it in the page. But when we’re thinking flex-
ibly, we instead need to translate a design created in Photoshop
(fig 2.3) into something more fluid, something more proportional.

How do we begin?

FLEXIBLE TYPESETTING
To find an answer, let’s do a little role-playing. No, no—you can
put away those twenty-sided dice. I had something a bit more
practical (and a bit less orc-enabled) in mind.

Pretend for a moment that you’re working as a front-end
developer. (If you’re already a front-end developer, well, pretend

fig 2.2: When tailored to the needs of your content as well as the page’s dimensions, the
typographic grid is a powerful tool, aiding designer and reader alike.

	 20 	 RESPONSIVE WEB DESIGN

fig 2.3: Our PSD is looking
pretty, but that grid’s more
than slightly pixel-heavy.
How can we become more
flexible?

 	 The Flexible Grid	 21	

you’re also wearing a pirate hat.) A designer on your team has
asked you to convert a simple design into markup and CSS.
Always game to help out, you take a quick look at the PSD she
sent you (fig 2.4).

There’s not much content here, true. But hey—even short
jobs require close attention to detail, so you begin focusing on
the task at hand. And after carefully assessing the content types
in the mockup, here’s the HTML you come up with:

<h1>Achieve sentience with Skynet! Read »
 More »</h1>

A headline with a link embedded in it—a fine foundation
of semantic markup, don’t you think? After dropping in a
reset stylesheet, the content begins shaping up in your browser
(fig 2.5).

It’s definitely a modest start. But with our foundation in place,
we can begin adding a layer of style. Let’s start by applying some
basic rules to the body element:

body {
 background-color: #DCDBD9;
 color: #2C2C2C;
 font: normal 100% Cambria, Georgia, serif;
}

Nothing too fancy: We’re applying a light gray background
color (#DCDBD9) to our entire document, and a fairly dark text

fig 2.4: The mockup for our typesetting exercise. This should take, like, minutes.

	 22 	 RESPONSIVE WEB DESIGN

color (#2C2C2C). And finally, we’ve dropped in the font charac-
teristics: a default weight (normal), and a serif-heavy font stack
(Cambria, Georgia, serif).

Finally, you’ve probably noticed that the font-size has been
set to 100%. In doing so, we’ve simply set our base type size to
the browser’s default, which in most cases is 16 pixels. We can
then use ems to size text up or down from that relative baseline.
But before we do, we can see that our headline’s starting to shape
up (fig 2.6).

Wondering why the h1 doesn’t look, well, headline-y? We’re
currently using a reset stylesheet, which overrides a browser’s
default styles for HTML elements. It’s a handy way to get all
browsers working from a consistent baseline. Personally, I’m
a big fan of Eric Meyer’s reset (http://bkaprt.com/rwd2/11/), but
there are dozens of fine alternatives out there.

At any rate, that’s why our h1 looks so small: it’s simply in-
heriting the font-size of 100% we set on the body element, and
rendering at the browser’s default type size of 16 pixels.

Now, if we were content with pixels, we could just translate
the values from the comp directly into our CSS:

h1 {
 font-size: 24px;
 font-style: italic;
 font-weight: normal;
}

fig 2.5: Plain, style-free markup. The stuff dreams (and websites) are made of.

http://bkaprt.com/rwd2/11/

 	 The Flexible Grid	 23	

h1 a {
 color: #747474;
 font: bold 11px Calibri, Optima, Arial, sans-serif;
 letter-spacing: 0.15em;
 text-transform: uppercase;
 text-decoration: none;
}

And that would be fine—there’s nothing actually wrong with
setting your type in pixels. But for the purposes of our relative
typesetting experiment, let’s instead start to think proportion-
ally, and express those pixel-based font-size values in relative
terms. So instead of pixels, we’ll use our friend the em.

Contextual healing

To do so, we’ll need to do a teensy bit of math: we’ll simply
take the target font size from our comp, and divide it by the
font-size of its containing element—in other words, its con-
text. The result is our desired font-size expressed in relative,
oh-so-flexible ems.

In other words, relative type sizes can be calculated with this
simple formula:

target ÷ context = result

fig 2.6: With one simple CSS rule, we can set some high-level parameters for our design.

	 24 	 RESPONSIVE WEB DESIGN

(Quick aside: If you’re at all like me, the word “math” causes
immediate and serious panic. But speaking as someone who
took a philosophy course for his college math credit, don’t run
screaming into the hills quite yet. I rely on my computer’s calcu-
lator program heavily, and simply paste the result into my CSS.
That keeps me from really having to, you know, do the math.)

So with our formula in hand, let’s turn back to that 24px
headline. Assuming that our base font-size: 100% on the body
element equates to 16px, we can plug those values directly into
our formula. So if we need to express our h1’s target font size
(24px) relative to its context (16px), we get:

24 ÷ 16 = 1.5

And there we are: 24px is 1.5 times greater than 16px, so our
font-size is 1.5em:

h1 {
 font-size: 1.5em; /* 24px / 16px */
 font-style: italic;
 font-weight: normal;
}

And voilà! Our headline’s size perfectly matches the size speci-
fied in our comp, but is expressed in relative, scaleable terms
(fig 2.7).

(I usually put the math behind my measurements in a com-
ment to the right-hand side of the line (/* 24px / 16px */),
which makes future adjustments much, much easier for me
to make.)

With that squared away, let’s turn to our lonely little “Read
More” link. Actually, as you can see in figure 2.7, it’s not so
little—and that’s the problem. Sized in our comp (fig 2.4) at 11
pixels in a generously kerned sans-serif, we need to scale the
text down. A lot. Because at the moment, it’s simply inheriting
the font-size: 1.5em set on its containing element, the h1.

 	 The Flexible Grid	 25	

And that’s important to note. Because the headline’s text is set
at 1.5em, any elements inside that headline need to be expressed
in relation to that value. In other words, our context has changed.

So to set the font-size of our link in ems, we’ll divide our
target of 11px not by 16px, the value set on the body, but by
24px—the font size of the headline, our new context:

11 ÷ 24 = 0.458333333333333

After that little division we’re left with one of the least sexy
numbers you’ve probably seen yet today. (Oh, but just you wait:
the chapter’s not over yet.)

Now, you might be tempted to round 0.45833333333333em
to the nearest sane-looking number—say, to 0.46em. But don’t
touch that delete key! It might make your eyes bleed to look at
it, but 0.458333333333333 perfectly represents our desired font
size in proportional terms. What’s more, browsers are perfectly
adept at rounding off those excess decimal places as they inter-
nally convert the values to pixels. So giving them more informa-
tion, not less, will net you a better result in the end.

In the spirit of accuracy, we can just drop that homely-look-
ing number directly into our CSS (line wraps marked »):

fig 2.7: Our headline is properly sized with flexible, scaleable ems. (But what the heck is up
with that link?)

	 26 	 RESPONSIVE WEB DESIGN

h1 a {
 font: bold 0.458333333333333em Calibri, Optima, »
 Arial, sans-serif; /* 11px / 24px */
 color: #747474;
 letter-spacing: 0.15em;
 text-transform: uppercase;
 text-decoration: none;
}

The result? Our tiny page is finished, perfectly matching our
intended design—but with text set in resizable, scalable ems
(fig 2.8).

From flexible fonts to a flexible grid

It’s possible you’re very, very bored right now. I mean, here you
are, knee-deep in what’s supposed to be a chapter about creating
flexible, grid-based layouts, and this Ethan fellow won’t stop
prattling on about typesetting and math. The nerve.

But the first time I had to build on a flexible grid, I had no idea
where to begin. So I did what I do every time I’m faced with a
problem I don’t know how to solve: I avoided it entirely, and
started working on something else.

fig 2.8: And with some simple math, our typesetting’s complete—without a single pixel
in sight.

 	 The Flexible Grid	 27	

As I started work on setting the site’s type in ems, I had a
minor epiphany: namely, that we can apply the same sort of
proportional thinking to layout that we apply to relative font
sizes. In other words, every aspect of our grid—the rows and
columns, and the modules draped over them—can be expressed
as proportions of their containing element, rather than in un-
changing, inflexible pixels.

And we can do so by recycling our trusty target ÷ context
= result formula. Let’s dive in.

CREATING A FLEXIBLE GRID
Let’s pretend that our designer sent over another mockup, since
she was so impressed with our quick turnaround on that head-
line we produced. We’re now tasked with coding the blog sec-
tion of the Robot or Not website (fig 2.9).

As it turns out, our designer likes us so darn much she’s even
included a quick content inventory of the page (fig 2.10), which
will save us some pre-production planning. We should really
send her some cookies or something.

We can handily translate her schematic into a basic markup
structure, like so:

<div class="page">
 <div class="blog section">
 <h1 class="lede">Recently in The Bot »
 Blog</h1>

 <div class="main">
 …
 </div><!-- /end .main -->

 <div class="other">
 …
 </div><!-- /end .other -->
 </div><!-- /end .blog.section -->
</div><!-- /end .page -->

	 28 	 RESPONSIVE WEB DESIGN

fig 2.9: Our new
assignment: converting
this blog design into
a standards-based,
flexible layout.

fig 2.10: The content
inventory for our blog
module.

 	 The Flexible Grid	 29	

Our skeleton markup is lean, mean, and semantically rich,
perfectly matching the high-level content inventory. We’ve cre-
ated a generic container for the entire page (.page), which in
turn contains our .blog module. And within .blog we’ve created
two more containers: a div classed as .main for our main article
content, and another div classed as .other for, um, other stuff.
Poetry it ain’t, but poetry it doesn’t have to be.

At this point, we’re going to skip a few steps in our exercise.
In fact, let’s pretend that this is one of those cooking shows
where the chef throws a bunch of ingredients into a pot, and
then turns around to produce a fully cooked turkey. (This meta-
phor handily demonstrates how infrequently I watch cooking
shows. Or cook turkey.)

But let’s assume that we’ve already done all the CSS related to
typesetting, background images, and just about every element
of our design that isn’t related to layout (fig 2.11). With those
other details finished, we can focus exclusively on producing
our fluid grid.

So how exactly do we turn those .main and .other blocks into
proper columns? With our content inventory finished and some
basic markup in place, let’s go back to our comp and take a closer
look at the grid’s physical characteristics (fig 2.12).

Reviewing the design tells us a few things: first, that the grid
itself is divided into 12 columns, each measuring 69 pixels across
and separated by regular 12px-wide gutters. Taken together,
those columns and gutters give us a total width of 960 pixels.
However, the blog itself is only 900 pixels wide, centered hori-
zontally within that 960px-wide canvas.

So those are the high-level details. And if we take a closer
look at the two columns inside of the blog (fig 2.13), we can see
that the left-hand content column (.main in our markup) is 566
pixels wide, while the right-hand, secondary column (.other)
is only 331 pixels across.

Well now. Quite a few pixel values floating around so far,
aren’t there? And if we were content with pixels we could sim-
ply drop them into our CSS directly. (Hello, leading statement!)

	 30 	 RESPONSIVE WEB DESIGN

.page {
 margin: 36px auto;
 width: 960px;
}

.blog {
 margin: 0 auto 53px;
 width: 900px;
}

.blog .main {
 float: left;
 width: 566px;
}

.blog .other {
 float: right;
 width: 331px;
}

Nice and neat: we’ve set the width of .page to 960 pixels, cen-
tered the 900px-wide .blog module within that container, set
the widths of .main and .other to 566px and 331px, respectively,

fig 2.11: Our template is
finished! Well, with the
possible exception of, you
know, an actual layout.

 	 The Flexible Grid	 31	

and finally floated the two columns opposite each other. And the
result looks stellar (fig 2.14).

But while our layout’s matched the comp perfectly, the re-
sult is downright inflexible. Fixed at a width of 960px, our page
is blissfully indifferent to changes in viewport size, forcing a
horizontal scrollbar upon the reader if the window drops even
slightly below 1024 pixels (fig 2.15).

In short, we can do better.

fig 2.12: Grid-based layout is grid-based!

fig 2.13: Let’s narrow our focus a bit, and measure the internal columns.

	 32 	 RESPONSIVE WEB DESIGN

From pixels to percentages
Instead of pasting the pixel values from our comp directly into
our CSS, we need to express those widths in relative, proportional
terms. Once we’ve done so, we’ll have a grid that can resize itself
as the viewport does, but without compromising the design’s
original proportions.

Let’s start at the outermost .page element, which contains
our design, and work our way in:

.page {
 margin: 36px auto;
 width: 960px;
}

Nasty, evil pixels. We hates them.

fig 2.14: A few pixel-based floats later, and our design’s nearly finished. Or is it?

 	 The Flexible Grid	 33	

Okay, okay: not really. Remember, there’s absolutely noth-
ing wrong with fixed-width layouts! But to move toward a
more flexible grid, let’s start with a percentage value to replace
that 960px:

.page {
 margin: 36px auto;
 width: 90%;
}

I’ll confess that I arrived at 90% somewhat arbitrarily, doing a bit
of trial and error in the browser window to see what looked best.
By setting our .page element to a percentage of the browser
window, we’ve created a container that will expand and contract
as the viewport does (fig 2.16). And as that container is centered
horizontally within the page, we’ll be left with a comfortable five
percent margin on either side.

fig 2.15: Our layout is lovely, but it’s so very inflexible. Let’s fix that.

	 34 	 RESPONSIVE WEB DESIGN

So far, so good. Moving down the markup, let’s set our sights
on the .blog module itself. Previously, when we were toying
with pixels, we wrote the following rule:

.blog {
 margin: 0 auto 53px;
 width: 900px;
}

Instead of a value set in pixels, we need to express .blog’s
width of 900px in proportional terms: specifically, describing it
as a percentage of the width of its containing element. And this
is where our beloved target ÷ context = result formula
comes back into play.

We already know our target pixel width for our blog: that’s
900px, as defined in our mockup. What we want is to describe

fig 2.16: Our container flexes as the browser window does.

 	 The Flexible Grid	 35	

that width in relative terms, as a percentage of .blog’s containing
element. Since .blog is nested within the .page element, we’ve
got our context—namely, 960 pixels, the width of .page as it was
designed in the mockup.

So let’s divide our target width for .blog (900) by its context
(960):

900 ÷ 960 = 0.9375

We’re left with a result of 0.9375. Doesn’t look like much, I’ll
admit. But by moving the decimal over two places we’re left
with 93.75%, a percentage we can drop directly into our CSS:

.blog {
 margin: 0 auto 53px;
 width: 93.75%; /* 900px / 960px */
}

(Just as I did with our relative typesetting exercise, I’ve left
the formula in a comment off to the right of the width property.
This is a personal preference, of course, but I’ve found it to be
incredibly helpful.)

So that takes care of our two containing elements. But what
about our content columns?

.blog .main {
 float: left;
 width: 566px;
}

.blog .other {
 float: right;
 width: 331px;
}

Our left-hand content column is floated to the left, and set
at 566px; the additional content is floated opposite, sized at a
width of 331px. Once again, let’s replace those pixel-based target
widths with percentages.

	 36 	 RESPONSIVE WEB DESIGN

But before we drop those values into our target ÷ context
= result formula, it’s important to note that our context has
changed. Last time, we divided the width of our blog module
by 960px, the width of its container (.page). But since they’re
nested inside .blog, we need to express our columns’ widths in
relation to 900px—the width of the blog.

So we’ll divide our two target values (566px and 331px) by
900px, our new context:

566 ÷ 900 = .628888889
331 ÷ 900 = .367777778

Once we move our decimal points we’re left with 62.8888889%
and 36.7777778%, the proportional widths of .main and .other:

.blog .main {
 float: left;
 width: 62.8888889%; /* 566px / 900px */
}

.blog .other {
 float: right;
 width: 36.7777778%; /* 331px / 900px */
}

Just like that, we’re left with a flexible, grid-based layout
(fig 2.17).

With some simple math we’ve created a percentage-based
container and two flexible columns, creating a layout that resizes
in concert with the browser window. And as it does, the pixel
widths of those columns might change—but the proportions of
our design remain intact.

FLEXIBLE MARGINS AND PADDING
Now that those two columns are in place, we’re done with the
top-level components of our flexible grid. Marvelous. Wonderful.
Stupendous, even. But before we haul out any more adjectives,
there’s quite a bit of detail work to be done.

 	 The Flexible Grid	 37	

Can’t get no ventilation
First and foremost, our design may be flexible, but it is in serious
need of some detail work. The two most grievous offenders? The
title of our blog is flush left within its container (fig 2.18), and
our two columns currently abut each other, with no margins or
gutters in sight (fig 2.19). We definitely have some cleanup to do.

So let’s begin with that headline. In our comp, there’s 48
pixels of space between our headline and the left edge of its
container (fig 2.20). Now, we could use pixels to set a fixed
padding-left on our headline in either pixels or ems, like so:

.lede {
 padding: 0.8em 48px;
}

This is a decent solution. But a fixed value for that padding-
left would create a gutter that doesn’t line up with the rest of
our fluid grid. As our flexible columns expand or contract, that
gutter would simply ignore the rest of our design’s proportions,
sitting stubbornly at 48px no matter how small or wide the
design became.

So instead, let’s create a flexible gutter. So far, we’ve been
describing various elements’ widths in proportional terms. But
we can also create percentage-based margins and padding to
preserve the integrity of our flexible grid. And we can reuse the
target ÷ context = result formula to do so.

Before we start in with the math, it’s important to note
that whether you’re setting a flexible margin or padding on an

fig 2.17: Our flexible grid is complete.

	 38 	 RESPONSIVE WEB DESIGN

fig 2.18: Our headline is in dire need
of padding.

fig 2.19: Margins? We don’t need no
stinking margins. (Actually, we do. We
really do.)

fig 2.20: According to the design, we
need 48px of horizontal padding on
the left edge of our headline.

 	 The Flexible Grid	 39	

element, the context is always the same: it’s the width of the
element’s container.

Since we want to set some padding on our .lede headline,
our context is the width of its container—that is, our 900px-wide
.blog module. So out comes the calculator, and we’re left with:

48 ÷ 900 = 0.0533333333

which translates to:

.lede {
 padding: 0.8em 5.33333333%; /* 48px / 900px */
}

And there we have it: our 48px padding has been expressed in
relative terms, as a proportion of our headline’s width.

With that issue resolved, let’s introduce a bit of white space to
our compacted content. To do so, it’s worth remembering that
each column actually has a smaller module contained within
it: the left-hand .blog column contains an .article, while the
.other column contains our .recent-entries listing (fig 2.21).

We start with the recent entries module. Fortunately for us,
our work’s over pretty quickly. Since we know the width of the
element (231px) and the width of its containing column (331px),
we can simply center our module horizontally:

.recent-entries {
 margin: 0 auto;
 width: 69.7885196%; /* 231px / 331px */
}

Now, we could take the same approach with our article. But
instead, let’s make it a bit more interesting. Remember the 48px
padding we set on our headline? Well, our article falls along the
same column (fig 2.22). So rather than just centering our article
within its container, let’s create another proportional gutter.

Our target value is 48px. And since we’re working with rela-
tive padding, our context should be the width of the article itself.

	 40 	 RESPONSIVE WEB DESIGN

But once again, since there’s no explicit width set on .article,
we can simply use 566px, the width of its parent (.blog), for
our context:

fig 2.21: Taking a look at the comp, we can quickly size up their respective widths. Pun
unfortunate, but intended.

fig 2.22: Our headline and article
share a common padding.

 	 The Flexible Grid	 41	

.article {
 padding: 40px 8.48056537%; /* 48px / 566px */
}

Voilà! Our flexible grid’s all but finished (fig 2.23).

Getting negative

Let’s turn to our blog entry’s beleaguered date header. Currently,
it’s spanning the full width of the blog entry, and that won’t
do. Given what we’ve learned so far, it’s fairly straightforward
to fix its width: the comp tells us our date should be floated to
the left, and that it occupies one 69px column (refer back to
fig 2.21). Since the date sits within the 470px-wide article, we
have our context.

fig 2.23: Flexible padding and margins! Hooray!

	 42 	 RESPONSIVE WEB DESIGN

Armed with that information, let’s write some quick CSS:

.date {
 float: left;
 width: 14.68085106%; /* 69px / 470px */
}

So far, so flexible, so good. But there’s one key component miss-
ing: our date is currently floating neatly against the left edge of
the article, with the title and copy floating around it (fig 2.24).
What we need to do is to pull that date out of its container, and
move it across the left-hand edge of the entire module.

And with negative margins, we can do exactly that. And we
don’t have to change our approach because the margin is nega-
tive: just as before, we simply need to express that margin in
relation to the width of the element’s container.

If we look at the mockup, we can see that there are 81 pixels
from the left edge of the date over to the left edge of the article
(fig 2.25). And if this was a fixed-width design, that would be
our negative margin:

.date {
 float: left;
 margin-left: -81px;
 width: 69px;
}

But hey: we haven’t used a single pixel yet, and we’re not
about to start now. Instead, we want to express that margin in
relative terms. It’s going to be a negative margin, but that doesn’t
change the math. We still want to express our target value—that
81px-wide margin—as a percentage of 470px, the width of the
date’s containing element:

81 ÷ 470 = .17234042553191

Do the decimal shift and slap a minus sign on there, and we’ve
got our proportional, negative margin:

 	 The Flexible Grid	 43	

.date {
 float: left;
 margin-left: -17.2340425531%; /* 81px / 470px */
 width: 14.68085106%; /* 69px / 470px */
}

Now sit back, relax, and take comfort in the fact that you’ve built
your first fully flexible grid (fig 2.26). I feel a high five coming on.

fig 2.24: Something’s rotten in
Denmark. (By “Denmark,” I mean
“our entry date.” And by “rotten,”
I mean “entirely too close to the
adjoining text.”)

fig 2.25: We need to draw that date
out to the left by 81px. Or, you know,
the relative equivalent thereof.

	 44 	 RESPONSIVE WEB DESIGN

Moving forward, flexibly
I realize I just subjected you to a truckload of division signs. And
as someone who gets headaches from balancing his checkbook,
believe me: I sympathize.

But building a flexible grid isn’t entirely about the math. The
target ÷ context = result formula makes it easy to articulate
those proportions into stylesheet-ready percentages, sure—but
ultimately, we need to break our habit of translating pixels
from Photoshop directly into our CSS, and focus our attention
on the proportions behind our designs. It’s about becoming
context-aware: better understanding the ratio-based relationships
between element and container.

But a fluid grid is just our foundation; it’s the first—but most
important—layer of a responsive design. Let’s move onto the
next step.

fig 2.26: Our flexible grid is finally finished. Not a pixel value in sight, and we didn’t have
to skimp on the aesthetics.

 	 Flexible Images	 45	

THINGS ARE looking good so far: we’ve got a grid-based layout,
one that doesn’t sacrifice complexity for flexibility. I have to
admit that the first time I figured out how to build a fluid grid,
I was feeling pretty proud of myself.

But then, as often happens with web design, despair set in.
Currently, our page is awash in words, and little else. Actually,
nothing else: our page is nothing but text. Why is this a problem?
Well, text reflows effortlessly within a flexible container—and
I don’t know if you’ve noticed, but the Internet seems to have
one or two of those “image” things lying around. None of which
we’ve incorporated into our fluid grid.

So what happens when we introduce fixed-width images into
our flexible design?

GOING BACK, BACK TO MARKUP, MARKUP
To find an answer, let’s do another quick experiment: let’s drop
an image directly into our blog module, and see how our layout

3 FLEXIBLE
IMAGES

	 46 	 RESPONSIVE WEB DESIGN

responds. The first thing we’ll need to do is to clear some space
for it in our markup.

Remember our little blockquote, comfortably tucked into our
blog article? Well, we’ve got way too much text on this darned
page, so let’s replace it with an inset image:

<div class="figure">
 <p>

 <b class="figcaption">Lo, the robot walks
 </p>
</div>

Nothing fancy: an img element, followed by a brief but descrip-
tive caption wrapped in a b element. I’m actually appropriating
the HTML5 figure/figcaption tags as class names in this snippet,
which makes for a solidly semantic foundation.

(Sharp-eyed readers will note that I’m using a b element for
a non-semantic hook. Now, some designers might use a span
element instead. Me, I like the terseness of shorter tags like b or
i for non-semantic markup.)

With that HTML finished, let’s drop in some basic CSS:

.figure {
 float: right;
 margin-bottom: 0.5em;
 margin-left: 2.55319149%; /* 12px / 470px */
 width: 49.14893617%; /* 231px / 470px */
}

We’re creating a nice inset effect for our figure. It’ll be floated
to the right, and will span roughly half the width of our article,
or four columns of our flexible grid. Markup: check; style: check.
Of course, all this HTML and CSS is for naught if there isn’t an
actual image available.

Now, because I love you (and robots) dearly, not just any
image will do. And after scouring the web for whole minutes, I
found a fantastically imposing robo-portrait (fig 3.1). The beauti-
ful thing about this image (aside from the robot, of course) is that

 	 Flexible Images	 47	

it’s huge. I’ve cropped it slightly, but I haven’t scaled it down at
all, leaving it at its native resolution of 655×655. This image is
much larger than we know its flexible container will be, making
it a perfect case to test how robust our flexible layout is.

So let’s drop our oversized image onto the server, reload the
page, and—oh. Well. That’s pretty much the worst thing on the
internet (fig 3.2).

Actually, the result isn’t that surprising. Our layout isn’t bro-
ken per se—our flexible container is working just fine, and the
proportions of our grid’s columns remain intact. But because
our image is much wider than its containing .figure, the excess

fig 3.1: An appropriately botty robot
pic, courtesy of Jeremy Noble (http://
bkaprt.com/rwd2/12/).

fig 3.2: Our huge image is huge. Our
broken layout is broken.

http://bkaprt.com/rwd2/12/
http://bkaprt.com/rwd2/12/

	 48 	 RESPONSIVE WEB DESIGN

content simply overflows its container, and is visible to the user.
There simply aren’t any constraints applied to our image that
could make it aware of its flexible environment.

FLUID IMAGES
But what if we could introduce such a constraint? What if we
could write a rule that prevents images from exceeding the width
of their container?

Well, here’s the good news: that’s very easy to do.

img {
 max-width: 100%;
}

First discovered by designer Richard Rutter (http://bkaprt.com/
rwd2/13/), this one rule immediately provides an incredibly
handy constraint for every image in our document. Now, our
img element will render at whatever size it wants, as long as it’s
narrower than its containing element. But if it happens to be
wider than its container, then the max-width: 100% directive
forces the image’s width to match the width of its container.
And as you can see, our image has snapped into place (fig 3.3).

What’s more, modern browsers have evolved to the point
where they resize the images proportionally: as our flexible
container resizes itself, shrinking or enlarging our image, the
image’s aspect ratio remains intact (fig 3.4).

I hope you’re not tired of all this good news because as it
happens, the max-width: 100% rule can also apply to most
fixed-width elements, like video and other rich media. In fact,
we can beef up our selector to cover other media-ready ele-
ments, like so:

img,
embed,
object,
video {
 max-width: 100%;
}

http://bkaprt.com/rwd2/13/
http://bkaprt.com/rwd2/13/

 	 Flexible Images	 49	

Whether it’s a cute little Flash video (fig 3.5), some other embed-
ded media, or a humble img, browsers do a fair job of resizing
the content to fit a flexible layout. All thanks to our lightweight
max-width constraint.

So we’ve cracked the problem of flexible images and media—
right? One CSS rule and we’re done?

BECAUSE THIS JOB IS NEVER EASY
Time to let the healing begin: we need to work through the
pain, the tears, the rending of garments, and talk about a few
browser-specific issues around flexible images.

fig 3.3: Just by including max-width: 100%, we’ve prevented our image from escaping its
flexible container. On a related note, I love max-width: 100%.

	 50 	 RESPONSIVE WEB DESIGN

fig 3.4: Regardless of how wide or small its flexible container becomes, the image resizes
proportionally. Magic? Who can say.

fig 3.5: Other media play nicely with max-width: 100%, becoming flexible themselves. Did
I mention I love max-width: 100%?

 	 Flexible Images	 51	

max-width in Internet Explorer

The cold, hard truth is that Internet Explorer 6 and below don’t
support the max-width property. IE7 version and above? Oh,
it is positively brimming with support for max-width. But if
you’re stuck supporting the (cough) venerable IE6 or lower, our
approach needs refinement.

Now, there are several documented ways to get max-width
support working in IE6. Most are JavaScript-driven, usually rely-
ing on Microsoft’s proprietary expression filter to dynamically
evaluate the width of an element, and to manually resize it if it
exceeds a certain threshold. For an example of these decidedly
non-standard workarounds, I’d recommend Cameron Moll’s
classic blog entry on the subject (http://bkaprt.com/rwd2/14/).

Me? I tend to favor a more lo-fi, CSS-driven approach.
Namely, all modern browsers get our max-width constraint:

img,
embed,
object,
video {
 max-width: 100%;
}

But in a separate IE6-specific stylesheet, I’ll include the following:

img,
embed,
object,
video {
 width: 100%;
}

See the difference? IE6 and lower get width: 100%, rather than
the max-width: 100% rule.

A word of warning: tread carefully here, for these are drasti-
cally different rules. Whereas max-width: 100% instructs our

http://bkaprt.com/rwd2/14/

	 52 	 RESPONSIVE WEB DESIGN

images to never exceed the width of their containers, width:
100% forces our images to always match the width of their con-
taining elements.

Most of the time, this approach will work just fine. For ex-
ample, it’s safe to assume that our oversized robot.jpg image
will always be larger than its containing element, so the width:
100% rule works beautifully.

But for smaller images like thumbnails, or most embedded
movies, it might not be appropriate to blindly up-scale them
with CSS. If that’s the case, then a bit more specificity might be
warranted for IE:

img.full,
object.full,
.main img,
.main object {
 width: 100%;
}

If you don’t want the width: 100% rule to apply to every piece
of fixed-width media in your page, we can simply write a list of
selectors that target certain kinds of images or video (img.full),
or certain areas of your document where you know you’ll be
dealing with oversized media (.main img, .main object). Think
of this like a whitelist: if images or other media appear on this
list, then they’ll be flexible; otherwise, they’ll be fixed in their
stodgy old pixel-y ways.

So if you’re still supporting legacy versions of Internet
Explorer, a carefully applied width: 100% rule can get those
flexible images working beautifully. But with that bug sorted,
we’ve still got one to go.

And boy, it’s a doozy.

In which it becomes clear that Windows hates us

If you look at our blog module with certain Windows-based
browsers, our robot.jpg has gone from looking imposing to
looking, well, broken (fig. 3.6). But this isn’t a browser-specific
issue as much as a platform-specific one: Windows doesn’t scale

 	 Flexible Images	 53	

images that well. In fact, when they’re resized via CSS, images
quickly develop artifacts on Windows, dramatically impacting
their quality. And not in a good way.

For a quick test case, I’ve tossed a text-heavy graphic into
a flexible container, and then resized our image with the max-
width: 100% fix, while IE6 and below receive the width: 100%
workaround. Now, you’d never actually put this amount of text
in an image. But it perfectly illustrates just how badly things can
get in IE7 or lower. As you can see, the image looks—if you’ll
pardon the technical term—downright nasty (fig 3.7).

fig 3.6: Seen here in IE6, our robot
image has developed some unsightly
artifacts. Guess Windows doesn’t
much care for our flexible images.

fig 3.7: In certain Windows-based
browsers, the image quickly develops
too many artifacts to be readable.

	 54 	 RESPONSIVE WEB DESIGN

But before you give up on the promise of scalable, flexi-
ble images, it’s worth noting that this bug doesn’t affect every
Windows-based browser. In fact, only Internet Explorer 7 and
lower are affected, as is Firefox 2 and lower on Windows. More
modern browsers like Safari, Firefox 3+, and IE8+ don’t exhibit a
single problem with flexible images. What’s more, the bug seems
to have been fixed in Windows 7, so that’s more good news.

So with the scope of the problem defined, surely there’s a
patch we can apply? Thankfully, there is—with the exception
of Firefox 2.

Now, this grizzled old browser was released in 2006, so I
think it’s safe to assume it isn’t exactly clogging up your site’s
traffic logs. At any rate, a patch for Firefox 2 would require some
fairly involved browser-sniffing to target specific versions on
a specific platform—and browser-sniffing is unreliable at best.
But even if we did want to perform that kind of detection, these
older versions of Firefox don’t have a switch that could fix our
busted-looking images.

Internet Explorer, however, does have such a toggle. (Pardon
me whilst I swallow my pride for this next section title.)

Hail AlphaImageLoader, the conquering hero

Ever tried to get transparent PNGs working in IE6 and be-
low? Chances are good you’ve encountered AlphaImageLoader,
one of Microsoft’s proprietary CSS filters (http://bkaprt.com/
rwd2/15/). There have since been more robust patches created
for IE’s lack of support for the PNG alpha channel (Drew Diller’s
DD_belatedPNG library is an old favorite of mine: http://bkaprt.
com/rwd2/16/), but historically, if you had a PNG attached to an
element’s background, you could drop the following rule into
an IE-specific stylesheet:

.logo {
 background: none;
 filter: progid:DXImageTransform.Microsoft. »
 AlphaImageLoader(src="/path/to/logo.png", »
 sizingMethod="scale");
}

http://bkaprt.com/rwd2/15/
http://bkaprt.com/rwd2/15/
http://bkaprt.com/rwd2/16/
http://bkaprt.com/rwd2/16/

 	 Flexible Images	 55	

This AlphaImageLoader patch does a few things. First, it
removes the background image from the element, then inserts
it into an AlphaImageLoader object that sits “between” the
proper background layer and the element’s content. But the
sizingMethod property (http://bkaprt.com/rwd2/17/) is the clever
bit, dictating whether the AlphaImageLoader object should crop
any parts of the image that overflow its container, treat it like a
regular image, or scale it to fit it within its containing element.

I can hear you stifling your yawns by now: after all, what
does an IE-specific PNG fix have to do with our broken image
rendering?

Quite a bit, as it turns out. At one point I discovered that
applying AlphaImageLoader to an image dramatically
improves its rendering quality in IE, bringing it up to par
with, well, every other browser on the planet. Furthermore,
by setting the sizingMethod property to scale, we can use our
AlphaImageLoader object to create the illusion of a flexible
image.

So I whipped up some JavaScript to automate that process.
Simply download the script (available at http://bkaprt.com/
rwd2/18/) and include it on any page with flexible images; it will
scour your document to create a series of flexible, high-quality
AlphaImageLoader objects.

And with that fix applied, the difference in our rendered im-
ages is noticeable (fig 3.8): in our example we’ve gone from an
impossibly distorted image to an immaculately rendered one.
And it works wonderfully in a flexible context.

(It’s worth mentioning that many of Microsoft’s proprietary
filters, and AlphaImageLoader in particular, have some perfor-
mance overhead associated with them—Stoyan Stefanov covers
the pitfalls in more detail on the YUI blog: http://bkaprt.com/
rwd2/19/. What does this mean for you? Just be sure to test the
fix thoroughly on your site, gauge its effect on your users, and
evaluate whether or not the improved rendering is worth the
performance tradeoff.)

With the max-width: 100% fix in place (and aided by our
width: 100% and AlphaImageLoader patches), our inset image
is resizing beautifully across our target browsers. No matter the

http://bkaprt.com/rwd2/17/
http://bkaprt.com/rwd2/18/
http://bkaprt.com/rwd2/18/
http://bkaprt.com/rwd2/19/
http://bkaprt.com/rwd2/19/

	 56 	 RESPONSIVE WEB DESIGN

size of the browser window, our image scales harmoniously
along with the proportions of our flexible grid.

But what about images that aren’t actually in our markup?

FLEXIBLY TILED BACKGROUND IMAGES
Let’s say our dearly esteemed designer sends over a revised
mockup of our blog module. Notice anything different about
it? (fig 3.9)

Up until now, our blog’s content has been sitting on a rather
unassuming near-white background. But now the design has
been modified slightly, adding a two-toned background to the
blog entry to provide more contrast between the left- and right-
hand columns. What’s more, there’s actually a subtle level of
noise added to the background, adding an extra level of texture
to our design (fig 3.10).

So: how do we actually add this new background image to
our template?

Back in 2004, Dan Cederholm wrote a brilliant article show-
ing how a vertically repeating background graphic could be used
to create a “faux column” effect (http://bkaprt.com/rwd2/20/).
The technique’s genius is in its simplicity: by tiling a colored

fig 3.8: Our image is now perfectly legible, and resizing wonderfully. A dab of
AlphaImageLoader’ll do ya.

http://bkaprt.com/rwd2/20/

 	 Flexible Images	 57	

background graphic vertically behind our content, we can create
the illusion of equal height columns.

In Dan’s original technique, the background graphic was
simply centered at the top of the content area and then tiled
vertically, like so:

.blog {
 background: #F8F5F2 url("blog-bg.png") repeat-y 50% 0;
}

And that technique works beautifully. But Dan’s technique as-
sumes that your design is a fixed width, creating a graphic that
matches the width of your design. Then how, pray, are we

fig 3.9: Our blog’s sidebar is now sporting a background graphic. Hot.

fig 3.10: A detailed look at our new
background treatment.

	 58 	 RESPONSIVE WEB DESIGN

supposed to work in a background image that tiles over two
flexible columns?

Thanks to some early research by designer Doug Bowman
(http://bkaprt.com/rwd2/21/), we can still apply the faux column
technique. It just requires a little bit of extra planning, as well as
a dash of your favorite formula, target ÷ context = result.

First, we’ll begin by taking a look at our mockup, to find the
transition point in our background graphic, the exact pixel at
which our white column transitions into the gray. And from the
look of things, that switch happens at the 568 pixel mark (fig 3.11).

Armed with that information, we can now adapt the “faux
columns” approach to our fluid grid. First, we’ll convert that
transition point into a percentage-based value relative to our
blog module’s width. And to do so, our target ÷ context = re-
sult formula comes into play yet again. We have our target value
of 568px, and the width of the design—our context—is 900px.
And if we plug those two values into our stalwart formula:

568 ÷ 900 = 0.631111111111111

That’s right: another impossibly long number, which converts
to a percentage of 63.1111111111111%.

Keep that percentage in the back of your mind for a mo-
ment. Now, let’s open up your favorite image editor, and create
a foolishly wide document—say, one that’s 3000 pixels across
(fig 3.12). And since we’re going to tile this image vertically, its
height is only 160px tall.

In a moment, we’re going to turn this blank document into
our background graphic. But why is it so large? Well, this image
needs to be larger than we can reasonably assume the browser
window will ever be. And unless you’re reading this from the
25th century on your wall-sized display made of, I don’t know,
holograms or whatever, I’m assuming your monitor’s not quite
that wide.

To create the columns themselves, we’ll need to apply the
transition point percentage (63.1111111111111%) to our new,
wider canvas. So if we’re working with a graphic that’s 3000px
across, we simply need to multiply that width by the percent-
age, like so:

http://bkaprt.com/rwd2/21/

 	 Flexible Images	 59	

3000 x 0.631111111111111 = 1893.333333333333

We’re left with 1893.333333333333 as our result. And since
Photoshop doesn’t deal in anything less than whole pixels, let’s
round that down to 1893 pixels. Armed with that number, we’ll
recreate our textures in our blank image, switching from white
to gray at the 1893rd pixel (fig 3.13).

fig 3.11: Our white column switches over to gray at the 568px mark. That’s our
transition point.

fig 3.12: A monstrously large canvas that we’ll (shortly) turn into our background graphic.

fig 3.13: We’ve applied that percentage to our oh-so-wide background graphic, creating
our tile-ready columns.

	 60 	 RESPONSIVE WEB DESIGN

How does that help us? Well, what we’ve just done is to
proportionally scale our transition point up to this new, wider
canvas. So we can take that new pixel value, and use it to create
our columns: the white column will be 1893px wide, with the
gray column filling up the remainder.

So now there’s only one thing left to do: drop our newly
minted graphic into our stylesheet.

.blog {
 background: #F8F5F2 url("blog-bg.png") repeat-y »
 63.1111111111111% 0; /* 568px / 900px */
}

As in Dan’s original technique, we’re still positioning the
graphic at the very top of our blog, and then repeating it ver-
tically down the width of the module (repeat-y). But the
background-position value reuses our transition point per-
centage (63.1111111111111% 0), keeping the columns firmly in
place as our design resizes itself.

And with that, we’ve got faux columns working beautifully in
a fluid layout (fig 3.14). All thanks to Dan Cederholm’s original
approach, augmented with a little proportional thinking.

Fully flexible background images?

Of course, our flexible faux column isn’t really flexible: we’re
simply using percentages to position a background image in such
a way that the columns appear to resize with their container.
The image’s dimensions haven’t changed at all.

But what about a background image that actually does need
to resize with the layout? Perhaps you’ve placed a logo on an
h1 element’s background, or used sprites to create rollovers for
your site’s navigation. Can we resize images that need to live in
the background?

Well, sort of. There is a CSS3 property called background-
size (http://bkaprt.com/rwd2/22/), which would allow us to
create truly flexible background images. Depending on your
audience, browser support might be a little uneven, especially
if you’re supporting Internet Explorer 8.0 or lower.

http://bkaprt.com/rwd2/22/

 	 Flexible Images	 61	

But all is not lost! There are some rather ingenious JavaScript-
based solutions out there: for example, Modernizr (http://
modernizr.com/) allows you to test if a browser supports certain
CSS properties like background-size and, if not, serve appropri-
ate fallback styles; alternately, Scott Robbin’s jQuery Backstretch
plugin (http://bkaprt.com/rwd2/23/) simulates resizable back-
ground images on the body element. And as you’ll see in the next
chapter, CSS3 media queries could also be used to apply different
background images tailored to different resolution ranges. So
while background-size might not work everywhere, the sky
is still, as the kids say, the limit.

LEARNING TO LOVE OVERFLOW
There are a few other options for working fixed-width im-
ages into a fluid context. In fact, you might consider browsing

fig 3.14: Our flexibly faux columns.

http://modernizr.com/
http://bkaprt.com/rwd2/23/

	 62 	 RESPONSIVE WEB DESIGN

through Richard Rutter’s experiments with wide images placed
in flexible layouts (http://bkaprt.com/rwd2/13/). There are a num-
ber of promising experiments listed there, some of which might
prove useful to you as you start tinkering with flexible layouts.

One method I’ve used on a few occasions is the overflow
property. As we saw earlier in the chapter, wide images will, by
default, simply bleed out of their containing elements. And in
most cases, the max-width: 100% rule is the best way to con-
strain them, snapping them back down to a manageable size.
But alternately, you could simply clip off that excess image data
by applying overflow: hidden. So rather than setting our inset
image to resize itself automatically…

.feature img {
 max-width: 100%;
}

…we could instead simply clip off all that excess, overflowing
data like so:

.feature {
 overflow: hidden;
}

.feature img {
 display: block;
 max-width: auto;
}

And there you have it: one image, cropped to fit inside its con-
tainer (fig 3.15). The image is all still there, but the excess bits
have just been hidden from view.

Now, as you can see, this isn’t really a workable solution. In
fact, I’ve found that in the overwhelming majority of cases,
overflow is generally less useful than scaling the image via max-
width. But still, it’s an option to consider, and one you might
find some use for.

http://bkaprt.com/rwd2/13/

 	 Flexible Images	 63	

NEGOTIATE THAT CONTENT
It’s worth noting that both the overflow and max-width: 100%
approaches to flexible images are actually pretty robust, and
work remarkably well for most kinds of media. In fact, I’ve used
them successfully on a number of complex fluid grids.

However, both approaches are ultimately “content-blind.”
Each establishes some basic rules for the way an image interacts
with its container: max-width: 100% scales oversized images
down to match the width of their containers, while controlling
overflow allows the designer to conceal any image data that
might bleed out of its containing element.

But what about especially complex graphics? If your image is
especially information-rich (fig 3.16), simply scaling or cropping
it might be less than desirable—in fact, those approaches might
actually impede your readers’ ability to understand the content
contained in that image.

If that’s the case, it might be worth investigating ways of deliv-
ering different versions of the same image to different resolution
ranges. In other words, you could create multiple versions of
your infographic—say, one ideal for desktop browsers, as well as
another, more linearized version for small-screen devices. With
those options established, a server-side solution could intelligent-
ly serve the most appropriate image for that resolution range.

fig 3.15: And with a dash of overflow:
hidden applied to our image’s
container, we’re left with an image
that’s . . . well, cropped. Yay, I guess?

	 64 	 RESPONSIVE WEB DESIGN

Creating such a solution is beyond the scope of this book
(and beyond the skill of your humble author), but there’s good
news: a picture element is in the process of coming to HTML,
one that would allow us to load images responsively, switching
in different graphics depending on certain conditions in the
browser—say, the width of the viewport:

<picture>
 <source srcset="img/large.jpg" media="(min-width: »
 800px)">
 <source srcset="img/default.jpg">
 <img srcset="img/default.jpg" alt="A gray cat looks »
 on with anticipation">
</picture>

fig 3.16: This rich infographic from the BBC News site (http://bkaprt.com/rwd2/24/)
contains information critical to the page’s content. Simply scaling it down could prove
counterproductive.

http://bkaprt.com/rwd2/24/

 	 Flexible Images	 65	

In the above code, we’re using picture to conditionally serve
different images via two source elements inside it: specifically, a
small-screen-friendly default.jpg is shown unless the screen is
at least 800px wide, at which point large.jpg is shown instead.
(Wondering about those media attributes? We’ll cover media
queries in the next chapter.)

Now, the picture element is still in the process of being
standardized, with browser implementations expected to arrive
soon, but the Picturefill JavaScript library (http://bkaprt.com/
rwd2/25/) allows you to use picture today. Which is great! But
what’s more, there are myriad ways of serving different im-
ages in a responsive context—many of them client-side, some
requiring some server-side code. (For a comprehensive look at
some of the best approaches, I heartily recommend Scott Jehl’s
Responsible Responsive Design, available via A Book Apart.)

But regardless of how you decide to conditionally load your
images, your approach could be augmented by the various
client-side techniques we’ve discussed so far. For example, you
could serve images to a limited number of resolutions, and then
use max-width: 100% to smooth the transition to other devices,
browsers, and resolution ranges on an as-needed basis.

FLEXIBLE GRIDS AND IMAGES, UP IN THE
PROVERBIAL TREE

At this point, we’ve explored everything you need to build
complex but flexible grid-based layouts: the simple math behind

fig 3.17: Two chapters later, and we’ve finally got a completed grid-based layout that can
expand and contract with a changing viewport.

http://bkaprt.com/rwd2/25/
http://bkaprt.com/rwd2/25/

	 66 	 RESPONSIVE WEB DESIGN

flexible grids, and some strategies for working images and other
media into that framework. While we’ve been focusing on build-
ing a fairly simple blog module, we can actually use this to build
the rest of the Robot or Not site, creating a design that’s founded
on a system of proportions and percentages, with nary a pixel
in sight (fig 3.17).

With this flexible foundation in place, we’re ready to add the
final ingredient to our responsive design.

(And no, it’s not mixed metaphors.)

 	 Media Queries	 67	

FOR MOST of my career, I’ve been a staunch proponent of non-
fixed layouts. Flexible or completely fluid, it didn’t matter: I felt
that building some measure of fluidity into our designs better
prepared them for the changes inherent to the web: changes
in the user’s browser window size, in display or device resolu-
tion. What’s more, I’d often use words like “future-proof” and
“device-agnostic” when describing the need for this flexibility.
Often while standing alone at parties.

But at some point, everything breaks.
As flexible as the Robot site is right now, it’s not complete-

ly bulletproof. Sure, its fluid grid makes it pretty resilient to
changes in window size and screen resolution—much more so
than a fixed layout would. But even slight changes to the size
and shape of the browser window will cause our layout to warp,
bend, and possibly break outright.

Here’s the thing, though: that’s okay.

MEDIA QUERIES4

	 68 	 RESPONSIVE WEB DESIGN

LET THE HEALING BEGIN
As painful as it might be, let’s look at some of the areas where our
design breaks as it reshapes itself. By identifying the problems
we’re facing, we’ll be in a better position to apply the needed
fixes. Even if we shed a tear or three in the process.

Since we’re working with a flexible layout, we can simply
resize the browser window to a few different widths. Now, this
is no substitute for actually testing our work on separate devices.
But it allows us to quickly assess how our design handles several
different resolution ranges, and simulate how users on capable
phones, tablets, or other devices might experience our design.

A question of emphasis

Let’s begin by bringing the browser window in a bit, from
around 1024 pixels wide to roughly 760 pixels or so (fig 4.1).
Pretty quickly, a number of problems appear.

fig 4.1: By adjusting the size of our browser window, we can get a quick sense of how our
design performs at different resolutions.

 	 Media Queries	 69	

Our initial design was all about emphasis: large, imposing
headlines, a prominent lead image, and generous margins. All of
which still scale inside our flexible layout—but visually speaking,
the priorities have gone way off.

Look at the top of our site, where the lead image now domi-
nates the entire page (fig 4.2). Since we’re cropping the image
with the overflow property, it isn’t scaling with the rest of our
flexible grid. What’s more, the subject of the image, our beloved
robot, is actually getting pretty severely clipped. So we’re left
with an image that’s not only huge, but barely comprehensible.
Fantastic.

Sitting in the shadow of that gigantic graphic, our logo has
scaled down to a nearly microscopic size. And what little pad-
ding we enjoyed between the navigation and the lead image
has been lost, making the entire masthead feel claustrophobic.

As much as I hate to say it, our visual hierarchy is reduced to
shambles as soon as we move slightly below the resolution we
originally designed for.

fig 4.2: It’s not exactly sunshine and puppies at the top of our design. Whatever that means.

	 70 	 RESPONSIVE WEB DESIGN

Miniature grid, monster problems

And that’s not the worst of it. If we bring the browser window
in a bit more to around 600 pixels—the width of a small browser
window, or of newer tablet computers held in portrait mode—
the headaches just keep coming (fig 4.3). At the top of the screen,
our visual hierarchy’s still a mess: the lead image is now cropped
to the point of incoherence, and our poor logo is even more of
a thumbnail. But now our primary navigation is wrapping in a
fairly embarrassing manner. Surely we can do better than that?

Moving down the page, our blog is really starting to suffer
(fig 4.4). Where the two-column layout once provided easy
access to some additional information, it now makes content
in each column feel constricted. In particular, the article’s lines
are uncomfortably short, making for a decidedly awful reading
experience. And the photo set within our blog entry looks in-
consequential, the content of the picture almost hard to discern.

Finally, to conclude our little sideshow of tears, the photo
module at the bottom of the page is probably the worst of all
(fig 4.5). You thought the image in our blog entry was bad?
These photos are comically small, and nearly indecipherable.

fig 4.3: Every visitor to our site will absolutely love this broken-looking navigation. No,
trust me. They totally will.

 	 Media Queries	 71	

The generous margins we initially used to frame those pictures
now seem wildly out of proportion, drowning our photos in a
sea of white space.

fig 4.4: Reading this entry / feels
like scanning a haiku: / painfully
short lines.

fig 4.5: Tiny pictures, monstrous
margins. A match made in . . . well,
somewhere not great.

	 72 	 RESPONSIVE WEB DESIGN

Widescreen woes

Our problems aren’t isolated to the smaller end of the resolu-
tion spectrum, however. If we maximize our browser window,
a whole new slew of design issues present themselves.

The intro (fig 4.6) doesn’t look awful, but the image is now
smaller than the space allotted for it. That aside, things don’t
look terrible up top—far from ideal, I admit, but not utterly
abysmal either. In general, our flexible grid looks okay up there.

So let’s quash those good feelings by scrolling down to look at
the blog (fig 4.7). Remember how clipped our entry’s lines felt in
the smaller window? I’m almost missing those cramped spaces,
because these lines are just frighteningly long: the width of that
article column is entirely too generous at this level. As much as
my eye loves to spend hours circling back to the beginning of
the next line I’m supposed to read, there has to be a better way.

And finally, our photo gallery completely dominates the bot-
tom of the page (fig 4.8). The images themselves look fine, but

fig 4.6: That intro is just uncomfortably wide.

 	 Media Queries	 73	

fig 4.7: Moving down the page, the blog doesn’t fare quite so well. Long lines, tiny images,
sad Ethan.

fig 4.8: These images are, to use a technical term, large ’n‘ chunky.

	 74 	 RESPONSIVE WEB DESIGN

they’re cartoonishly large. In fact, on my monitor there’s no hint
of any content above or below the module. Is this really the best
way to present this information to our readers?

THE PROBLEM AT HAND
We’ve identified a host of visual problems. But there’s a larger
issue coming into focus. As we move beyond the resolution for
which it was originally designed, our grid becomes a liability
to our content. Its proportions constrict our content at smaller
resolutions, and isolate it in a sea of white space at higher ones.

This isn’t a problem unique to flexible layouts, however. No
design, fixed or fluid, scales well beyond the context for which
it was originally designed.

So how can we create a design that can adapt to changes
in screen resolution and viewport dimensions? How can our
page optimize itself for the myriad browsers and devices that
access it?

In other words, how can our designs become more responsive?

SLOUCHING TOWARD RESPONSIVENESS
Thankfully, the W3C has been wrestling with this question for
some time. To better understand the solution they eventually
presented, it’s worth reviewing a bit of the backstory.

Meet the media types

Their first stab at a solution was media types, part of the CSS2
specification (http://bkaprt.com/rwd2/26/). Here’s how they
were first described:

On occasion, however, style sheets for different media types may
share a property, but require different values for that property.
For example, the “font-size” property is useful both for screen
and print media. The two media types are different enough to

http://bkaprt.com/rwd2/26/

 	 Media Queries	 75	

require different values for the common property; a document
will typically need a larger font on a computer screen than on
paper. Therefore, it is necessary to express that a style sheet,
or a section of a style sheet, applies to certain media types.

Okay, yeah. That’s a bit obtuse, isn’t it? Let’s try it in non-robot
terms.

Ever written a print stylesheet (http://bkaprt.com/rwd2/27/)?
Then you’re already familiar with the concept of designing
for different kinds of media. The ideal browsing experience
couldn’t differ more between desktop browsers and printers, or
between handheld devices and speaking browsers. To address
this the W3C created a list of media types (http://bkaprt.com/
rwd2/28/), attempting to classify each browser or device under a
broad, media-specific category. The recognized media types are:
all, braille, embossed, handheld, print, projection, screen,
speech, tty, and tv.

Some of these media types, like print or screen, or perhaps
even projection, are probably ones you’ve used before. Perhaps
others like embossed (for paged braille printers) or speech (for
speaking browsers and interfaces) seem new. But all of these
media types were created so that we could better design for
each type of browser or device, by conditionally loading CSS
tailored for each. So a screen-based device would ignore CSS
loaded with the print media type, and vice versa. And for style
rules meant to apply to all devices, the specification created the
all supergroup.

In practice, that meant customizing the media attribute of
a link:

<link rel="stylesheet" href="global.css" media="all" />
<link rel="stylesheet" href="main.css" media="screen" />
<link rel="stylesheet" href="paper.css" media="print" />

Or perhaps creating an @media block in your stylesheet, and
associating it with a particular media type:

http://bkaprt.com/rwd2/27/
http://bkaprt.com/rwd2/28/
http://bkaprt.com/rwd2/28/

	 76 	 RESPONSIVE WEB DESIGN

@media screen {
 body {
 font-size: 100%;
 }
}

@media print {
 body {
 font-size: 15pt;
 }
}

In each case, the specification suggests the browser would
identify itself as belonging to one of the media types. (“I’m a
desktop browser! I belong to the screen media type.” “I smell
like ink cartridges and toner: I’m print media.” “I’m your video
game console’s browser: I’m media tv.” And so on.) Upon load-
ing the page, the browser would then render only the CSS per-
taining to its particular media type, and disregard the rest. And
in theory, this is a fantastic idea.

Theory being, of course, the last thing hard-working web
designers need.

Miscast types

Several problems with media types became evident when all
these little small-screen browsers, like phones and tablets, ar-
rived on the scene. According to the specification, designers
could have targeted them simply by creating a stylesheet for the
handheld media type:

<link rel="stylesheet" href="main.css" media="screen" />
<link rel="stylesheet" href="paper.css" media="print" />
<link rel="stylesheet" href="tiny.css" »
 media="handheld"/>

The problem with this approach is, well, us—at least in part.
Early mobile devices didn’t have sufficiently capable browsers

 	 Media Queries	 77	

so we largely ignored them, choosing instead to design compel-
ling screen- or print-specific stylesheets. And when capable
small-screen browsers finally did appear, there weren’t a lot of
handheld CSS files scattered about the web. As a result, many
mobile browser makers decided to default to reading screen-
based stylesheets.

But what’s more, media types paint with an incredibly broad
brush. Is one handheld stylesheet really suited to address
the challenges of designing for an iPhone and a five year-old
feature phone?

Enter the media query

Realizing some of the failings of media types, the W3C used their
work on CSS3 to take another crack at the problem. The result
was media queries (http://bkaprt.com/rwd2/29/), an incredibly
robust mechanism for identifying not only types of media, but
for actually inspecting the physical characteristics of the devices
and browsers that render our content.

Let’s take a look:

@media screen and (min-width: 1024px) {
 body {
 font-size: 100%;
 }
}

Now, every media query—including the one above—has two
components:

1.	Each query still begins with a media type (screen), drawn
from the CSS2.1 specification’s list of approved media types
(http://bkaprt.com/rwd2/28/).

2.	Immediately after comes the query itself, wrapped in paren-
theses: (min-width: 1024px). And our query can, in turn, be
split into two components: the name of a feature (min-width)
and a corresponding value (1024px).

http://bkaprt.com/rwd2/29/
http://bkaprt.com/rwd2/28/

	 78 	 RESPONSIVE WEB DESIGN

Think of a media query like a test for your browser. When a
browser reads your stylesheet, the screen and (min-width:
1024px) query asks two questions: first, if it belongs to the
screen media type; and if it does, if the browser’s viewport
is at least 1024 pixels wide. If the browser meets both of those
criteria, then the styles enclosed within the query are rendered;
if not, the browser happily disregards the styles, and continues
on its merry way.

Our media query above is written as part of an @media
declaration, which enables us to put queries directly inside a
stylesheet. But you can also place queries on link elements by
inserting them into the media attribute:

<link rel="stylesheet" href="wide.css" media="screen »
 and (min-width: 1024px)" />

Or you can attach them to @import statements:

@import url("wide.css") screen and (min-width: 1024px);

I personally prefer the @media approach since it keeps your
code consolidated in a single file, while reducing the number
of extraneous requests the browser has to make to your server.

But no matter how you write your queries, the result in each
scenario is the same: if the browser matches the media type and
meets the condition outlined in our query, it applies the enclosed
CSS. Otherwise, it won’t.

Meet the features

It’s not just about testing for width and height. There are a host
of features listed in the specification our queries can test. But
before we dive in, it’s worth noting that the language used to
describe the features can be a bit . . . dense. Here are two quick
guidelines that helped me sort it out:

1.	In the spec’s language, every device has a “display area” and
“rendering surface.” Clear as mud, that. But think of it this
way: the browser’s viewport is the display area; the entire

 	 Media Queries	 79	

display is the rendering surface. So on your laptop, the dis-
play area would be your browser window; the rendering
surface would be your screen. (I don’t makes the terms. I
just explains ’em.)

2.	To test values above or below a certain threshold, some fea-
tures accept min- and max- prefixes. A fine example is width:
you can serve CSS conditionally to viewports above 1024
pixels by writing (min-width: 1024px), or below 1024 pixels
with (max-width: 1024px).

Got all that? Fantastic. With those two points out of the way,
let’s dive into the features the specification says we can use in
our queries (http://bkaprt.com/rwd2/30/) (table 4.1).

What’s really exciting is that we can chain multiple queries
together with the and keyword:

@media screen and (min-device-width: 480px) and »
 (orientation: landscape) { … }

This allows us to test for multiple features in a single query,
creating more complex tests for the devices viewing our designs.

Know thy features

Feeling drunk with power yet? Well, I should take this oppor-
tunity to mention that not all @media-aware browsers support
querying for all features outlined in the specification.

Here’s a quick example: when Apple’s iPad first launched, it
shipped with media query support for orientation. That meant
you could write orientation: landscape or orientation:
portrait queries to conditionally serve up CSS to the device,
depending on how it was being held. Cool, no? Sadly, the iPhone
didn’t support the orientation query until an OS upgrade ar-
rived a few months later. While each device allowed the user to
change its orientation, the iPhone’s browser didn’t understand
the queries for that particular feature.

The moral of this story? Research your target devices and
browsers thoroughly for the query features they do support,
and test accordingly.

http://bkaprt.com/rwd2/30/

	 80 	 RESPONSIVE WEB DESIGN

FEATURE
NAME

DEFINITION HAS min- AND
max- PREFIXES

width The width of the display area.

height The height of the display area.

device-width The width of the device’s
rendering surface.

device-height The height of the device’s
rendering surface.

orientation Accepts portrait or
landscape values.

aspect-ratio Ratio of the display area’s width
over its height. For example:
on a desktop, you’d be able to
query if the browser window is
at a 16:9 aspect ratio.

device-
aspect-ratio

Ratio of the device’s rendering
surface width over its height.
For example: on a desktop,
you’d be able to query if the
screen is at a 16:9 aspect ratio.

color The number of bits per color
component of the device.
For example, an 8-bit color
device would successfully pass
a query of (color: 8). Non-
color devices should return a
value of 0.

color-index The number of entries in
the color lookup table of the
output device. For example, @
media screen and (min-
color-index: 256).

 	 Media Queries	 81	

FEATURE
NAME

DEFINITION HAS min- AND
max- PREFIXES

monochrome Similar to color, the
monochrome feature lets us
test the number of bits per
pixel in a monochrome device.

resolution Tests the density of the pixels
in the device, such as screen
and (resolution: 72dpi)
or screen and (max-
resolution: 300dpi).

scan For tv-based browsing,
measures whether the scanning
process is either progressive
or scan.

scan Tests whether the device is a
grid-based display, like feature
phones with one fixed-width
font. Can be expressed simply
as (grid).

table 4.1: A list of the device features we can test in our media queries.

But while support may still be developing among modern
browsers and devices, media queries already give us an incred-
ibly broad vocabulary, one we can use to articulate how we’d like
our designs to appear in various devices and browsers.

A MORE RESPONSIVE ROBOT
And this is why media queries are the final component of a
responsive website. We’ve spent two chapters implementing
our flexible, grid-based layout—but this is only our foundation.
As that layout scales up or down, we can use media queries to

	 82 	 RESPONSIVE WEB DESIGN

correct any visual imperfections that crop up as the viewport
reshapes itself.

What’s more, we can use media queries to optimize the dis-
play of our content to best meet the needs of the device, creat-
ing alternate layouts tailored to different resolution ranges. By
conditionally loading style rules that target these ranges, media
queries allow us to create pages that are more sensitive to the
needs of the devices that render them.

In other words, by combining flexible layouts and media
queries, we’ll finally be able to make our sites responsive.

Let’s get started.

A room with a viewport

We’ve already identified a number of stress points in our design.
But before we start applying our media queries, we need to make
one final tweak to our markup.

When Apple launched the iPhone in 2007, they created a
new attribute value for Mobile Safari’s meta element: viewport
(http://bkaprt.com/rwd2/31/). Why? Well, the dimensions of the
iPhone’s display is 320×480, but Mobile Safari actually displays
web pages at a width of 980 pixels. If you’ve ever visited Apple’s
homepage (http://apple.com/) on a WebKit-enabled phone
(fig 4.9), then you’ve seen this behavior in action: Mobile Safari
is drawing the page upon a 980px-wide canvas, and then shrink-
ing it to fit within your phone’s 320×480 display.

Using the viewport tag allows us to control the size of that
canvas, and override that default behavior: we can dictate exactly
how wide the browser’s viewport should be. For example, we
could set our pages at a fixed width of 320px:

<meta name="viewport" content="width=320" />

Since being introduced by Apple, a number of mobile brows-
er makers have adopted the viewport mechanic, creating some-
thing of a de facto standard. So let’s incorporate it into our soon-
to-be responsive design. But instead of declaring a fixed pixel

http://bkaprt.com/rwd2/31/
http://apple.com/

 	 Media Queries	 83	

width, we’re going to take a more resolution-agnostic approach.
In the head of our HTML, let’s drop in this meta element:

<meta name="viewport" content="initial-scale=1.0, »
 width=device-width" />

The initial-scale property sets the zoom level of the page
to 1.0, or 100%, and helps ensure some consistency across small-
screen, viewport-aware browsers. (For more information on

fig 4.9: By default, Mobile Safari
renders web content at 980px wide—
even though its display is 320px wide
when held in portrait mode.

	 84 	 RESPONSIVE WEB DESIGN

how scaling works on different displays, I recommend Mozilla’s
explanation: http://bkaprt.com/rwd2/32/.)

But the important bit for us is the width=device-width set-
ting, which makes the width of the browser’s viewport equal to
the width of the device’s screen. So on an iPhone, for example,
Mobile Safari’s layout area wouldn’t default to 980px anymore.
Instead, it would be 320 pixels wide in portrait mode; in land-
scape, 480 pixels wide.

With this value in place, we can use max-width and min-
width to look for resolution ranges below or above certain reso-
lution thresholds, and conditionally load in CSS designed for
those ranges. What’s more, this allows all query-aware brows-
ers to take advantage of our media queries, making the design
responsive for all users—whether they’re using phones, tablets,
desktop computers, or laptops.

Okay, enough of my jabbering. Let’s see this in action.

MEDIA QUERIES IN ACTION
Remember those large, imposing headlines (fig 4.10)? Well,
here’s the CSS that currently styles them:

.main-title {
 background: #000;
 color: #FFF;
 font: normal 3.625em/0.9 "League Gothic", "Arial »
 Narrow", Arial, sans-serif; /* 58px / 16px */
 text-transform: uppercase;
}

fig 4.10: Here’s our high-
impact headline treatment,
looking all impactful.

http://bkaprt.com/rwd2/32/

 	 Media Queries	 85	

I’ve left out a few presentational properties, because what
I’m most concerned about is just how stupidly huge those head-
lines are at smaller resolutions. They’re set in the stately League
Gothic (http://bkaprt.com/rwd2/33/), colored in white (color:
#FFF) on a black background (background: #000). And in case
there was any doubt that these headlines were meant to be taken
very seriously, they’re displayed in uppercase through a dash of
text-transform, and then sized at an imposing 3.625em, or 58px.

Now, that treatment works well enough. But as we’ve just
seen, it doesn’t look great once we’ve less real estate to work
with. Whether viewed in narrower browser windows or on
smaller device displays, that design just doesn’t scale.

So let’s fix that.
First, we’ll create an @media block somewhere after our

initial .main-title rule, one that queries for a narrower resolu-
tion range:

@media screen and (max-width: 768px) { … }

In this query, we’ve asked that the browser render the enclosed
CSS only if its viewport is no wider than 768 pixels. Why 768px?
Well, media query-aware phones, as well as most recent tablets,
fall well beneath this threshold. Or at least, they do when held
a certain way: for example, the iPad’s resolution is 768px across
when held in portrait mode, but 1024px when held in landscape
mode.

But since we’re using max-width, not max-device-width,
narrower browser windows on your desktop or laptop will ap-
ply this small-screen-friendly range as well. (Remember: width
and height measure the viewport or browser window, whereas
device-width and device-height measure the dimensions of
the entire screen.)

With this query in place, we can start targeting the elements
of our design that don’t scale down that well. Let’s begin by re-
thinking our oversized headline treatment. To do so, we’ll place
a .main-title rule inside our media query, overwriting the CSS
properties that are causing us headaches:

http://bkaprt.com/rwd2/33/

	 86 	 RESPONSIVE WEB DESIGN

@media screen and (max-width: 768px) {
 .main-title {
 font: normal 1.5em Calibri, Candara, Segoe, »
 "Segoe UI", Optima, Arial, Helvetica, »
 sans-serif; /* 24px / 16px */
 }
}

Our first .main-title rule is still applied by all browsers read-
ing our CSS. But for narrower browser windows and devices—
specifically, those no wider than 768 pixels—the second rule
is applied as well, overriding its predecessor. We’ve made two
changes of note here: first, we’ve set a smaller font size on the
.main-title element, changing it from 3.625em (roughly 58px)
to a much smaller 1.5em, or 24px, that feels more appropriate
on smaller displays.

Secondly, the typeface we were initially using for our head-
lines—our beloved League Gothic—doesn’t scale down very
well to that size (fig 4.11). So I’ve decided to change the font-
family stack itself (Calibri, Candara, Segoe, "Segoe UI",
Optima, Arial, Helvetica, sans-serif), which feels a bit
more readable (fig 4.12).

Now, you’ve probably noticed that we didn’t have to rewrite
the other properties from the first .main-title rule. As a result,
the black background color, all-caps text-transform, and white
color still apply to our miniaturized headlines. Our query only
overwrites the features we don’t want.

And presto: by quickly applying a media query, we’ve
whipped up a headline treatment that feels much more appro-
priate for smaller displays (fig 4.13).

But this is just the beginning. Not only can we fine-tune our
typography to respond to changes in resolution, we can also
tackle our larger design problems as well.

Thinking in miniature

In fact, let’s begin by building on our new media query, and make
a slight change to our page’s layout. Remember our flexible .page
container from Chapter 2? Here’s what its CSS currently looks like:

 	 Media Queries	 87	

fig 4.11: League Gothic,
lovely though it is, shines
best as display copy. But
here, it’s a little too tiny.

fig 4.12: Less sexy than
League Gothic? Most
things are. Still, it’s much
more legible, and works
with the design.

fig 4.13: Our default
headline view above, with
the media query-corrected
version below.

	 88 	 RESPONSIVE WEB DESIGN

.page {
 margin: 36px auto;
 width: 90%;
}

Our container’s currently set to 90% of the browser window,
and centered horizontally (margin: 36px auto). Works great,
but let’s add a rule inside our existing media query to tweak its
behavior once we start falling below our initial resolution:

@media screen and (max-width: 768px) {
 .page {
 position: relative;
 margin: 20px;
 width: auto;
 }
}

Below 768px, we’re instructing the .page element to occupy the
full width of the browser window, save for a fixed 20px-wide
margin around its edges. A minor change, but this will afford us
a bit more space at smaller screen resolutions.

With our container sorted, we can turn our attention to the
content area.

@media screen and (max-width: 768px) {
 .page {
 margin: 20px;
 width: auto;
 }

 .welcome,
 .blog,
 .gallery {
 margin: 0 0 30px;
 width: auto;
 }
}

 	 Media Queries	 89	

This new rule selects the three top-level content modules—our
introduction (.welcome), the blog (.blog), and photo gallery
(.gallery)—and disables their horizontal margins, making them
occupy the full width of .page.

And just like that, we’ve linearized our page’s layout, making
it prime for reading on a smaller screen (fig 4.14). Can I get a
high five?

…No? What’s that, you say? There’s still a freakishly oversized
image at the top of our page? (fig 4.15)

Well, okay. I suppose we can clean that up. If it’s really bother-
ing you, I mean. But before we do, it’s probably worth taking a
quick look at the markup for that lead image, designed to be part
of a (yet-to-be-implemented) slideshow module.

<div class="welcome section">
 <div class="slides">
 <div class="figure">

 <div class="figcaption">…</div>
 </div><!-- /end .figure -->

 <ul class="carousel-nav">
 Previous
 Next

 </div><!-- /end .slides -->

 <div class="main">
 <h1 class="main-title">You can never be »
 too sure.</h1>
 </div><!-- /end .main -->
</div><!-- /end .welcome.section -->

There’s a fair bit of HTML here, but basically we’ve created a
.welcome module to contain our image as well as the introduc-
tory text that follows it (.main). Our image is part of a .figure
block, with the img itself wrapped in a b element, which will
act as a kind of “hook” for our CSS.

	 90 	 RESPONSIVE WEB DESIGN

Feel a bit crufty to you? I can see where you’re coming from.
But that b element, silly though it might appear, actually handles
a fair bit of layout for us. Here’s the relevant CSS:

fig 4.14: Our content’s
been linearized with two
extra rules. Neat! But
there’s something amiss . . .

fig 4.15:  . . . specifically,
that intro image still needs
work.

 	 Media Queries	 91	

.slides .figure b {
 display: block;
 overflow: hidden;
 margin-bottom: 0;
 width: 112.272727%; /* 741px / 660px */
}

.slides .figure b img {
 display: block;
 max-width: inherit;
}

First, we’ve set overflow to hidden on the b element, creating
a container that will crop any oversized content. But currently,
our flexible images will simply resize themselves as the b ele-
ment does, preventing that nice crop effect. So we’ve disabled
the max-width: 100% scaling on our slideshow images (max-
width: inherit). As a result, our big robot picture will simply
get cropped if it’s wider than the b element that contains it.

You might have noticed that the width of our b element is
actually larger than 100%. We’ve used our old target ÷ con-
text = result formula to create an element larger than the
.welcome module, allowing the enclosed image to extend a bit
off to the right.

But as my luck would have it, none of these effects work
especially well at lower resolutions. (Related: I have awful luck.)
So let’s add a bit more to the end of our media query:

@media screen and (max-width: 768px) {
 .slides .figure b {
 width: auto;
 }

 .slides .figure b img {
 max-width: 100%;
 }
}

	 92 	 RESPONSIVE WEB DESIGN

The first rule sets the width of our b container to auto, making
it the same width as its container. The second rule actually rein-
states the max-width: 100% behavior we discussed in Chapter
3, once again making the image expand and contract as its con-
tainer does. Taken together, these two simple little rules do quite
a bit, bringing our unruly image back in line with its container
and, by extension, the rest of our design (fig 4.16). I don’t know
about you, but I’m already breathing a sigh of relief.

Still, there’s one more item we should tend to before putting
our feet up. See our navigation up top? It’s still feeling incredibly
cramped. What’s more, if we bring our viewport in even slightly,
some decidedly un-awesome wrapping starts to occur (fig 4.17).

The masthead markup is fairly straightforward:

fig 4.16: Our image has
snapped into place. Relief:
I feel it.

fig 4.17: “Contact Us,” why
do you hate us so?

 	 Media Queries	 93	

<h1 class="logo">

 <i></i>

</h1>

<ul class="nav nav-primary">
 <li id="nav-blog">The ’Bot Blog

 <li id="nav-rated">Top Rated
 <li id="nav-droids">Droids of the Day

 <li id="nav-contact">Contact Us
<!-- /end ul.nav.nav-primary -->

That’s right: we’ve marked up our logo with an h1, and an
unordered list for the navigation. And, continuing in my oh-
so-imaginative streak, they’ve been classed as .logo and .nav-
primary, respectively. But what about the CSS?

.logo {
 background: #C52618 url("logo-bg.jpg");
 float: left;
 width: 16.875%; /* 162px / 960px */
}

.nav-primary {
 background: #5E140D url("nav-bg.jpg");
 padding: 1.2em 1em 1em;
}

.nav-primary li {
 display: inline;
}

The styles are fairly modest. We’re applying background
images to both elements, but there’s not much to the lay-
out itself: we’re floating the image to the left, causing it to

	 94 	 RESPONSIVE WEB DESIGN

overlap the navigation. And the individual list items inside our
.nav-primary list are simply set to display: inline. Still, it
works—at least until our page becomes narrow enough to cause
our inline elements to wrap.

Into a media query we go:

@media screen and (max-width: 768px) {
 .logo {
 float: none;
 margin: 0 auto 20px;
 position: relative;
 }

 .nav-primary {
 margin-bottom: 20px;
 text-align: center;
 }
}

What we’ve done is to disable the float we’d initially set on
our .logo, and instead centered it horizontally above our menu.
And .nav-primary has been set to text-align: center, which
centers our navigation items within it. Now as modifications go,
these are pretty minor—the change, however, is fairly noticeable
(fig 4.18). Both the logo and our primary navigation are isolated
on their own rows, with the proper priority accorded to each.

Personally, I’m pretty pleased with the way this looks—but
we’re not in the clear yet. Glancing over at the navigation, it
looks like things are fairly tight at the moment: there’s just not
a lot of space left for our navigation items. In fact, if we bring
in our screen by even a tiny amount, we’re again facing some
unseemly line wrapping (fig 4.19).

(I appear to be on some sort of personal crusade against wrap-
ping text. I don’t know why.)

We’ve uncovered another breaking point, one that isn’t fixed
by simply moving the logo up to its own row. So let’s create an-
other media query, one primed to deal with just this contingency:

 	 Media Queries	 95	

@media screen and (max-width: 768px) {
 …
}

@media screen and (max-width: 520px) {
 .nav-primary {
 float: left;
 width: 100%;
 }
 .nav-primary li {
 clear: left;
 float: left;
 width: 48%;
 }

 li#nav-rated,
 li#nav-contact {
 clear: right;
 float: right;
 }

 .nav-primary a {
 display: block;
 padding: 0.45em;
 }
}

fig 4.18: We can
dramatically reorient
the masthead at smaller
resolutions, giving both our
logo and the navigation a
bit more room to breathe.

	 96 	 RESPONSIVE WEB DESIGN

For even smaller screens—specifically, those narrower than 520
pixels—we’ve floated each li inside of .nav-primary, choosing
to float: right the second and fourth menu items. The end
result is a two-by-two grid of our navigation items, one that’s
more resilient to changes in viewport size than our display:
inline approach (fig 4.20).

It’s worth pointing out that we didn’t have to rewrite any of
the rules from our previous query (screen and (max-width:
768px)) in this one. That’s because screens that meet our new
“narrower than 520px” requirement also meet the “narrower
than 768px” requirement. In other words, rules from both que-
ries are applied at the smallest end of the resolution spectrum.
As a result, our second query only needs to concern itself with
the design problems unique to viewports no wider than 520px.

fig 4.19: Okay, this is
starting to get silly.

fig 4.20: I probably
shouldn’t tell you
how excited I am that
our navigation grid is
considerably more resilient
to resolution changes. So
I won’t.

 	 Media Queries	 97	

And there we are (fig 4.21). With some additional tweaking to
the internals of our page, we’ve finally got a design that responds
to the context it’s viewed in. We’re no longer locked in to the
grid, layout, or type we originally designed for one specific reso-
lution range. When layered on top of our flexible layout, media
queries allow us to address the design problems that result from
those shrinking viewports.

fig 4.21: Our responsive design is shaping up beautifully, scaling on—and beyond—
the desktop.

	 98 	 RESPONSIVE WEB DESIGN

This layout goes to eleven

But responsive web design isn’t just about making designs acces-
sible to smaller screens. You might recall that our design had a
significant number of issues when it was viewed in a maximized
browser window: images grew to unseemly sizes while lines of
text became uncomfortably long, our grid stretched beyond the
limits of usefulness (figs 4.6–4.8). Now, we could impose some
sort of outer limit on our design, perhaps with a max-width set
in ems or pixels. But let’s instead treat this as an opportunity to
design for another resolution range.

First, we’ll begin by introducing another media query to do
just that:

@media screen and (max-width: 768px) {
 …
}

@media screen and (max-width: 520px) {
 …
}

@media screen and (min-width: 1200px) {
 …
}

Our first media query set a resolution ceiling of 768 pixels: in
other words, devices and browser windows wider than that
max-width limit would simply ignore the enclosed CSS. We
quickly followed that up with another query for an even nar-
rower range of 520px, once again using max-width to do so.

For our next query, we’re instead using min-width to set
1200px as a baseline width requirement for all incoming brows-
ers and devices. If they’re wider than 1200 pixels, then they’ll
apply the enclosed styles; otherwise, they’ll simply ignore the
CSS, and go blithely about their business.

So let’s roll up our sleeves and set to work on a widescreen-
friendly layout:

 	 Media Queries	 99	

@media screen and (min-width: 1200px) {
 .welcome,
 .blog,
 .gallery {
 width: 49.375%;
 }

 .welcome,
 .gallery {
 float: right;
 margin: 0 0 40px;
 }

 .blog {
 float: left;
 margin: 0 0 20px;
 }
}

In the live Robot site (http://responsivewebdesign.com/robot/),
you’ll see a bunch of other changes that occur on this wides-
creen layout. But these three rules are really the critical ones.
We’re taking our three main content modules (.welcome, .blog,
and .gallery), and setting them to roughly half (49.375%) the
width of the entire page. Then, we’re floating the .welcome and
.gallery modules off to the right, and the blog to the left. The
result? A design that’s perfectly primed for reading on larger
displays (fig 4.22). Our over-long line lengths have been reined
in, and the blog—the key piece of content—has been brought
higher on the page, making it considerably more accessible.

In other words, our responsive design is finished.

A NOTE ABOUT COMPATIBILITY
After covering media queries for not a few pages, I suppose we
should briefly quash a few dreams—I mean, um, we should
probably talk about browser support.

http://responsivewebdesign.com/robot/

	 100 	 RESPONSIVE WEB DESIGN

The good news? Media queries enjoy remarkably broad sup-
port in modern desktop browsers. Opera has supported media
queries since version 9.5, Firefox 3.5 and above supports them,
as do WebKit-based desktop browsers like Safari 3+ and Chrome.
Even Internet Explorer 9 (http://bkaprt.com/rwd2/34/) sup-
ports media queries (http://bkaprt.com/rwd2/35/)! Somebody
pinch me.

And moving beyond the desktop, things are also looking
good for media queries. WebKit-based mobile browsers, such
as Mobile Safari, HP’s webOS, and Android’s browser all sup-
port media queries. And as reported by Peter-Paul Koch (http://
bkaprt.com/rwd2/36/), Opera Mobile and Opera Mini are on the
@media bandwagon, as are Mozilla’s forays into mobile brows-
ing. And with Windows Phone due to get IE9 in 2011 (http://
bkaprt.com/rwd2/37/), we’re facing a browser landscape that
enjoys widespread support for media queries, which is incred-
ibly exciting.

fig 4.22: We’ve revisited our design, considering how widescreen readers might best
experience it—and all with a quick media query.

http://bkaprt.com/rwd2/34/
http://bkaprt.com/rwd2/35/
http://bkaprt.com/rwd2/36/
http://bkaprt.com/rwd2/36/
http://bkaprt.com/rwd2/37/
http://bkaprt.com/rwd2/37/

 	 Media Queries	 101	

But sadly, “widespread” doesn’t mean “universal.” In desktop-
based browsers older than the version numbers listed above,
we’re out of luck. And no, Internet Explorer doesn’t provide
native media query support in versions 8 and below. And while
nearly all modern small-screen devices offer decent support,
some legacy browsers don’t understand media queries (http://
bkaprt.com/rwd2/38/).

So things are far from perfect. But that doesn’t mean that
responsive layouts are a pipe dream. First and foremost, there
are a number of JavaScript-based solutions that patch older
browsers’ lack of support. Personally, I’ve been using a script
called respond.js (http://bkaprt.com/rwd2/39/), a nimble little
library developed by Scott Jehl. Where css3-mediaqueries.
js is incredibly feature-rich, almost exhaustively so, Respond
simply patches support for min-width and max-width queries in
older browsers. And that works perfectly for most of the queries
I write these days.

In fact, by dropping the respond.js library into the head of our
page, we’ve now got a responsive layout working beautifully in
older, query-blind browsers like Internet Explorer 7 (fig 4.23).

Now, I’m not one to rely on JavaScript, and I suggest you
take the same approach. We can quote stats at each other until
we’re blue in the face, but there’s simply no guarantee that a user
will have JavaScript available in their browser. Their desktop
or laptop might be locked down by draconian IT security mea-
sures. And once we start looking beyond the desktop, to mobile
phones, popular proxy browsers, and other devices, JavaScript
support is notoriously scant, bordering on nonexistent in many
devices. Or maybe their device supports JavaScript, but it’s on an
incredibly slow or spotty network. What happens when they
lose their connection while downloading our JavaScript? (http://
bkaprt.com/rwd2/40/)

In the hopes of addressing those issues, we’ll spend some
time in Chapter 5 discussing workarounds that are less reliant
on JavaScript. But ultimately, it’s completely understandable
if JavaScript-based patches don’t appeal to you. However, that
only highlights the need to build your responsive design atop a
flexible foundation, ensuring your design has some measure of
device and resolution independence.

http://bkaprt.com/rwd2/38/
http://bkaprt.com/rwd2/38/
http://bkaprt.com/rwd2/39/
http://bkaprt.com/rwd2/40/
http://bkaprt.com/rwd2/40/

	 102 	 RESPONSIVE WEB DESIGN

WHY GO FLEXIBLE?
If you’ll permit me one fanboyish outburst: media queries are
downright awesome. They let us conditionally serve up CSS
based on the capabilities of the device rendering our sites, al-
lowing us to more fully tailor our design to our users’ reading
environment.

However, media queries alone do not a responsive design make.
A truly responsive design begins with a flexible layout, with
media queries layered upon that non-fixed foundation. There
are a number of arguments for this, most notably that a flexible
layout provides a rich fallback for JavaScript- and @media-blind
devices and browsers.

But that’s not the only reason. When the software company
Basecamp began experimenting with a responsive design for
one of their applications, they had this to say (http://bkaprt.
com/rwd2/41/):

As it turned out, making the layout work on a variety of devices
was just a matter of adding a few CSS media queries to the
finished product. The key to making it easy was that the layout
was already liquid, so optimizing it for small screens meant
collapsing a few margins to maximize space and tweaking the
sidebar layout in the cases where the screen is too narrow to
show two columns.

In other words, starting from a flexible foundation means we
have less code to produce. When working with media queries,

fig 4.23: With our JavaScript patch in place, older browsers like IE now have some
semblance of support for media queries.

http://bkaprt.com/rwd2/41/
http://bkaprt.com/rwd2/41/

 	 Media Queries	 103	

fixed-width layouts often need to be re-coded at every resolution
breakpoint, whereas a design built with percentages, not pixels,
maintains its proportions from one resolution to the next. As
we’ve seen in this chapter, we can selectively remove or change
the properties at each breakpoint, optimizing our layout with
a few quick edits.

What’s more, a flexible layout is better prepared for devices
that haven’t yet launched. The tablet market first arrived with
the launch of the iPad, and captured our imagination as other,
smaller tablets like the Galaxy Tab and Kindle hit the market.
And since then, we’ve seen the development of burgeoning
markets for wearable, internet-connected devices (http://bkaprt.
com/rwd2/42/), for web-enabled smart TVs (http://bkaprt.com/
rwd2/43/), and for other browsing contexts that, a few short
years ago, would have sounded like science fiction.

But this is the challenge facing us: we simply can’t keep up
with the different resolutions and form factors entering the mar-
ketplace. The web is, after all, meant to be viewed everywhere.
A flexible layout provides us with a foundation for the future:
it allows us to step back from targeting individual resolutions,
and better prepare our designs for devices that haven’t even
been imagined yet.

Establish constraints as needed

With that said, nobody knows your design—and its users—bet-
ter than you do. If you feel that placing a max-width on an ele-
ment will help it maintain its integrity, go right ahead. Here’s
Basecamp describing their responsive experiments again (http://
bkaprt.com/rwd2/41/):

The CSS max-width property seems almost forgotten in the web
designer’s toolbox since it wasn’t supported by Internet Explorer
6. With that restriction lifted, it’s the perfect complement
to a liquid layout, letting the content re-flow naturally at a
variety of widths but not expanding to the point of absurdity
where extreme line lengths make reading a chore. It’s a great
compromise between liquid and fixed layouts.

http://bkaprt.com/rwd2/42/
http://bkaprt.com/rwd2/42/
http://bkaprt.com/rwd2/43/
http://bkaprt.com/rwd2/43/
http://bkaprt.com/rwd2/41/
http://bkaprt.com/rwd2/41/

	 104 	 RESPONSIVE WEB DESIGN

Similar discussions have popped up on most responsive
design projects I’ve worked on. For example, on The Boston
Globe’s responsive site (http://bostonglobe.com/) the design has a
fixed max-width of 1200px, but is completely flexible below that
point (fig 4.24). So why not make it completely fluid? Well, we
spent a lot of time considering how the page would look when
it passed certain breakpoints. And the media queries we put in
place reflected that design thinking, ensuring the site would
be as pleasing to read on the latest build of Chrome as on an
Android phone or a Kindle’s browser. But ultimately, we decided
we didn’t have the audience to justify the time and resources
required to make a compelling widescreen design. So we decided
to introduce the max-width constraint.

What’s that? You’d like to see a few live examples of the mar-
riage of max-width and media queries? Well, I guess I’d have to
mention Dan Cederholm’s site (http://simplebits.com/), Frank
Chimero’s lovely design (http://frankchimero.com/), and design
agency Happy Cog’s official blog (http://cognition.happycog
.com/) (figs 4.25, 4.26 and 4.27). Each are beautiful examples
of this hybrid approach to flexible layouts, starting with a fluid
grid that’s eventually constrained by a pixel-based max-width.

Some designers prefer this method, maintaining that long line
lengths are too unruly and uncomfortable to read. And frankly,
they’re right—but the max-width property is only one solution
to that problem. Take designer and illustrator Jon Hicks’ site
(fig 4.28), one of the first responsive redesigns launched in 2010
(http://bkaprt.com/rwd2/44/).

fig 4.24: The Boston Globe responsive design is completely flexible—but only up to a
certain width. A flexible foundation, but with a light constraint. Nice.

http://bostonglobe.com/
http://simplebits.com/
http://frankchimero.com/
http://cognition.happycog.com/
http://cognition.happycog.com/
http://bkaprt.com/rwd2/44/

 	 Media Queries	 105	

fig 4.25: Dan Cederholm,
the web designer’s web
designer, decided to set a
max-width of 900 pixels
on his newly responsive
redesign. And you know
what? It works.

fig 4.27: Those talented
scamps at Happy Cog
recently launched a
responsive blog design,
deciding a max-width of
820 pixels was appropriate.
The result? It’s purty.

fig 4.26: Frank Chimero’s winningly responsive design has a complex, fluid grid, but he’s
capped it at a rather stately 85rem.

	 106 	 RESPONSIVE WEB DESIGN

fig 4.28: Jon Hicks’
responsive site is
completely flexible, and a
stunner at any resolution.

fig 4.30: Jon Hicks’
responsive “Shelf” theme
for WordPress and Tumblr
(http://bkaprt.com/
rwd2/45/) has a beautifully
flexible layout, but contains
fixed-width containers for
different kinds of entries.
(Love that horizontal
scrolling!)

fig 4.29: Instead of relying
on max-width, Jon opted
to adjust his typography in
certain resolution ranges,
which makes for a pleasing
measure and line length no
matter how his blog is read.

http://bkaprt.com/rwd2/45/
http://bkaprt.com/rwd2/45/

 	 Media Queries	 107	

While there isn’t a max-width constraining his design, Jon has
instead tweaked the typography at different resolution ranges,
finely tuning the leading and font-size to ensure his words are
still a pleasure to read—all without placing any constraints on
his design (fig 4.29).

In other words, the flexibility of a design doesn’t have to be
a liability. Instead, it can be another opportunity to practice
our craft, to better communicate with a certain class of users,
or to solve another set of problems affecting a particular type
of device.

But still, these are the kinds of decisions we constantly make
as designers, choosing between flexibility and control. What
responsive design shows us, however, is that it doesn’t need to
a binary proposition; we can have designs founded upon a flex-
ible layout, while still including fixed-width elements (fig 4.30).
So when and if my client decides their audience would benefit
from a widescreen layout, they could easily lift the current
max-width constraint, create another media query, and design
a compelling experience.

In other words, our designs can respond to our users’ needs
as quickly as we need them to.

	 108 	 RESPONSIVE WEB DESIGN

The Way is shaped by use,
But then the shape is lost.
Do not hold fast to shapes
But let sensation flow into the world
As a river courses down to the sea.”
—Dao De Jing, section 32, “Shapes”

BY NOW, you have all the tools you need to start building respon-
sive layouts. You’ve mastered the proportional thinking behind
the flexible grid, investigated a few strategies for incorporating
fixed-width media into your design, and explored how media
queries can bring our designs beyond the desktop.

But up until this point, we’ve been looking at respon-
sive design in a vacuum. In this chapter, let’s look at some
different ways to begin incorporating it into our work, as well
as a few paths to improve on some of the techniques we’ve
already discussed.

“
5 BECOMING

RESPONSIVE

 	 Becoming Responsive	 109	

A MATTER OF CONTEXT
As you begin experimenting, you’ll find that responsive designs,
when properly built, can provide your visitors with a high level
of continuity between different contexts. That’s because, at its
most basic level, responsive design is about serving one HTML
document to countless browsers and devices, using flexible
layouts and media queries to ensure that design is as portable
and accessible as possible.

However, certain web designers argue against this approach,
suggesting that different devices should always be served dif-
ferent markup. In a rather lengthy blog post, mobile developer
James Pearce questions the merits of responsive design (http://
bkaprt.com/rwd2/46/):

The fact that the user has a small screen in their hand is one
thing—the fact that it is in their hand at all is another. The fact
that the user may be walking, driving, or lounging is yet another.
In fact, it’s quite likely that they really deserve different content
and services altogether—or, at least, a differently prioritized
version of the default desktop experience.

Jeff Croft (http://bkaprt.com/rwd2/47/) puts it much more
succinctly:

By and large, mobile users want different things from your
product than desktop users do. If you’re a restaurant, desktop
users may want photos of your place, a complete menu, and
some information about your history. But mobile users probably
just want your address and operating hours.

There are two prongs to this argument: first, that the device im-
plies a context, telling us whether the user is stationary or mobile.
From that context, we can create a class of users, and infer a set
of goals. In other words, mobile users will want quicker access
to different tasks than they would if they were on a desktop or
laptop, where both time and bandwidth are on their side.

http://bkaprt.com/rwd2/46/
http://bkaprt.com/rwd2/46/
http://bkaprt.com/rwd2/47/

	 110 	 RESPONSIVE WEB DESIGN

Second, if the user’s priorities and goals do indeed differ from
one context to the next, then serving one HTML document to
everyone won’t cut it. Take Jeff ’s example: if the restaurant
site features photos prominently at the top of every page, then
chances are good that they’re near the top of the HTML. Which
means that a mobile visitor, when presented with the same
markup in a more linear fashion, will have to do a considerable
amount of scrolling just to find the hours of operation they
wanted.

For what it’s worth, I agree with these arguments—but up
to a point. It’s absolutely fair to assume a user’s context from
their device, but it’s just that: an assumption. For example, much
of my “mobile” browsing happens on the couch in my living
room, flipping idly through sites on my wireless network. Now,
this isn’t just another of my “Ethan doesn’t have a life” jokes:
research has shown that a significant percentage of people use
“the mobile web” from the comfort of their home (http://bkaprt.
com/rwd2/48/, http://bkaprt.com/rwd2/49/). And it’s not just the
“mobile context” that’s fuzzy, either: what does a “desktop” user
look like, anyway? Sure, they might be seated at a desk, with
a high-speed connection available to them—or they might be
tethered to a phone, or connected to a spotty hotel network.
“Mobile” and “desktop” are useful shorthand terms, but they’re
just that—shorthand terms that can, if we’re not careful, mask
a lot of complexity.

Now, that’s not to say that the context question isn’t valuable,
or that we shouldn’t be thinking about these difficult ques-
tions. But we can’t simply infer a user’s context from a class of
devices—in many cases, the implementation of these separate,
“context-aware” sites can be lacking (fig 5.1). What’s more, we
can’t neatly silo our audiences into device-specific groups: a
visitor to our sites may return at multiple points throughout her
day, using whatever screen happens to be nearest (http://bkaprt.
com/rwd2/50/). In other words, relying upon all-too-convenient
terms like “mobile” and “desktop” is no substitute for conducting
the proper research into how your audience accesses your site:
not only the devices and browsers they use, but how, where,
and why they use them.

http://bkaprt.com/rwd2/48/
http://bkaprt.com/rwd2/48/
http://bkaprt.com/rwd2/49/
http://bkaprt.com/rwd2/50/
http://bkaprt.com/rwd2/50/

 	 Becoming Responsive	 111	

But most importantly, responsive web design isn’t intended
to serve as a replacement for mobile web sites. Responsive de-
sign is, I believe, one part design philosophy, one part front-end
development strategy. And as a development strategy, it’s meant
to be evaluated to see if it meets the needs of the project you’re
working on. Perhaps there’s a compelling reason to keep your
site’s desktop and mobile experiences separate, or perhaps your
content would be better served by a responsive approach. Only
you and your users know for certain.

So while I agree with mobile web designers who say that
certain users of certain sites deserve different content, I think
the reverse is also true: many sites can benefit from serving one
document up to multiple contexts or devices. And those are the
perfect candidates for a responsive approach.

So how do you know if responsive design is right for you?

fig 5.1: When viewed on an iPad, YouTube and Twitter currently default to feature-light
“mobile” sites. Great design, but is it the right context?

	 112 	 RESPONSIVE WEB DESIGN

Know thy users’ goals

In early 2010 I worked on a site called Cog’aoke (fig 5.2), de-
signed to promote a karaoke event hosted by my then-employer.
Its main purpose was to provide visitors with information about
the party, its sponsors, and its venue. But there was an applica-
tion component as well: visitors could sign up to perform at the
event, browse through the available catalog of songs, and vote
for other prospective performers.

We also decided that the site needed a mobile-friendly
component. But we envisioned something completely differ-
ent from the desktop-specific site. We realized people stum-
bling to our event would need quick and ready access to the
directions. Furthermore, we were going to have a live voting
event at the show, and invite the audience to rate their favorite

fig 5.2: Behold Cog’aoke. Two different contexts,
two different sites.

 	 Becoming Responsive	 113	

performer at a certain time—all through our site, accessed via their
mobile phone.

As we were planning the site, it helped us to think of the
desktop site as the “pre-game” experience. The mobile site, on
the other hand, was really intended for the night of the event,
for attendees who were physically present. So the goals of the
two different contexts couldn’t have been more distinct.

With that in mind, it definitely would have been possible for
us to include all the markup for each context on every page of
the site. If we’d taken that route, every page would have had the
regular “desktop” content marked up in its HTML, as well as the
map, directions, and voting information for the mobile site. And
with those two modes baked into every HTML page, we could
have used some combination of media queries and display:
none to deliver the two sites to the right devices.

But that wouldn’t have been the right approach. We realized
it would have been irresponsible of us to ask our visitors to
download all that extraneous HTML, marking up content that
they’d never see, much less benefit from. And I don’t say that
just out of concern for mobile visitors: regardless of whether
our visitors were on a phone- or a desktop-based browser, we
would have been penalizing them with extra markup.

MEET “MOBILE FIRST”
When you have a free moment (and a stiff drink in hand), I
recommend browsing through Merlin Mann’s “Noise to Noise
Ratio” Flickr set (http://bkaprt.com/rwd2/51/). These screen
grabs showcase some of the most content-saturated pages on
the web; the pages are drowning in a sea of cruft. And the actual
article, both paragraphs of it, is nigh unfindable.

While the sites in Merlin’s gallery might be new to you, I
wager the problems they demonstrate are pretty familiar. What’s
more, I think this trend informs some of our preconceptions
about designing for “mobile” users: namely, we assume mobile
users need less content in part because desktop users can tol-
erate more. After all, screens are larger, users are often more
stationary, and can generally better focus on searching for the
content they want.

http://bkaprt.com/rwd2/51/

	 114 	 RESPONSIVE WEB DESIGN

But just because desktop users can sift through more content,
does that mean they need to? In other words, why is easy access
to key tasks only the domain of mobile users? Why can’t all users
of our sites enjoy the same level of focused, curated content?

Toward the end of 2009, designer Luke Wroblewski fired off
a little challenge to our industry, suggesting a website’s mobile
experience shouldn’t be an afterthought (http://bkaprt.com/
rwd2/52/). Citing the explosive growth of mobile web traffic, as
well as the exciting new technical capabilities of modern phones,
Luke suggested that instead today’s web professionals should
begin designing for mobile first.

“Mobile first” is a wonderful design philosophy. What’s more,
I’ve found it absolutely invaluable for the responsive design
projects I’ve worked on. As more browsers and devices begin
accessing our designs, and as our clients become interested in
designing beyond the desktop, it’s a perfect opportunity to take
a hard look at how we design for the web: our processes and
vocabulary, as well as the questions we ask and the solutions
we apply.

TOWARD A RESPONSIVE WORKFLOW
Of course, these are early days yet. Many designers, studios,
and companies are still learning about responsive design. As a
result, we don’t have many “best practices” to share within our
community. That’ll change over time, as we start thinking more
responsively in our work. So in the meantime, I thought I’d
share some of my experiences working with a more responsive
workflow. Perhaps they’ll be helpful to you, and (more likely)
you’ll find a way to improve upon them.

As I first began writing this, I was working on the redesign of
a large, content-rich site. Over the course of a given day, a reader
might access the site from home in the morning over coffee,
read an article or two during their morning train commute, and
possibly check in a few more times during the day.

Given the diversity of their readership, the client decided that
a responsive approach would be the most appropriate one for
their audience. So during the planning phases, the design team
has taken a hard look at every proposed piece of content for

http://bkaprt.com/rwd2/52/
http://bkaprt.com/rwd2/52/

 	 Becoming Responsive	 115	

the site, and asked one question: How does this content or feature
benefit our mobile users?

Okay, maybe I should’ve made that sound a bit more excit-
ing—I never was especially good at marketing. But it’s a question
we’ve derived from the “mobile first” approach, and one we’ve
found incredibly useful as the site’s designed. Here’s Luke’s
rationale for the value of this thinking in site planning (http://
bkaprt.com/rwd2/53/):

If you design mobile first, you create agreement on what matters
most. You can then apply the same rationale to the desktop/
laptop version of the web site. We agreed that this was the most
important set of features and content for our customers and
business—why should that change with more screen space?

It’s all too easy to fill a desktop browser window with social
media toolbars, links to related articles, battalions of RSS links,
and tag clouds galore. (This process is called “adding value,” I
believe.) But when we’re forced to work with a screen that’s
80% smaller than our usual canvas, nonessential content and
cruft quickly fall away, allowing us to focus on the truly critical
aspects of our designs.

In other words, designing for mobile devices first can enrich
the experience for all users, by providing the element often
missing from modern web design: focus. That’s not to say that
our client’s pages are light on content, or lacking in features.
But by framing our design process with that simple question,
we’ve gained a handy acid test to apply when considering each
proposed element, each new piece of functionality.

Iterative, collaborative design

Now, most design projects follow some version of the “waterfall”
project management workflow, dividing the work into distinct,
task-based phases. The specifics might change from one studio
to the next, but there are usually four segments: a planning
phase, a design phase, a development phase, and then, finally,
delivery of the finished site. In each phase, documents or files
are created—for example, a site map and wireframes during

http://bkaprt.com/rwd2/53/
http://bkaprt.com/rwd2/53/

	 116 	 RESPONSIVE WEB DESIGN

the planning phase—which the client approves before the next
phase of work begins.

Again, the way you manage your projects might differ slight-
ly. But for the design phase, the design team often mocks up a
number of pages in a graphics editor like Photoshop, Fireworks,
or the like. And once those mockups are finished and approved,
they’re handed off to the development team, ready to be pro-
duced into static HTML templates.

But for a responsive site, that process can quickly become a
bit unwieldy. Let’s pretend for a moment you’re redesigning a
site with only one page, so you knock out a mockup in your fa-
vorite design application. But how do you communicate to your
client how that page will appear on a phone? Or an iPad? Or a
widescreen display? If you’ve the time, budget, and resources,
it might be feasible for you to design each of those alternate
views, presenting those comps to the client, gathering feedback,
and then revising each as needed. But if you’re designing fifteen
pages, or fifty, then it can quickly become impractical to produce
every one of those mockups and their alternate views.

Recently, the responsive projects I’ve worked on have had a
lot of success combining design and development into one hy-
brid phase, bringing the two teams into one highly collaborative
group. I refer to this new, Voltron-esque phase as “designop-
ment.” (No, not really.)

Our reviews begin with the design team presenting a page
mockup to the entire group. This will typically be a desktop-
centric design (fig 5.3), although occasionally we might start
with a more mobile-focused layout. The goal is to get a starting
point in front of the entire group, to kick off a discussion about
how this design will need to accommodate different resolution
ranges and input types. Questions tend to fly back and forth
pretty rapidly: “How do you envision this slideshow working
on a touch device?” “Is this module always going to be collapsed
by default, or will widescreen users need to see more informa-
tion?” “How will this element look (and function) if JavaScript
isn’t available?”

The open questions are a really great forum for the team to
share ideas, to discuss how the design is intended to function
on different displays, and to review any particularly complex

 	 Becoming Responsive	 117	

pieces of interaction. If any design feedback needs action, then
the design gets revised. But if the group feels comfortable, or if
the revisions are sufficiently minor, then the development team
inherits the comps for some prototyping.

“Prototyping before the designs are final, you say?”
Absolutely, I say. Our goal is to get beyond the pixel limitations
of Photoshop, and begin building a design that can flex and grow
inside a changing browser window, that can scale to different
devices. So the development team quickly begins producing a
responsive design: converting the fixed grid into a fluid one,
discussing ways to flexibly handle different types of media, and
then finally applying the media queries that adapt our design to
different resolution ranges.

Once our media queries are in place, we’re constantly resiz-
ing our browser window to approximate how the designs will

fig 5.3: We’ll begin by
reviewing a finished page
comp, asking questions
about how it should
respond to different
devices and browsers.

	 118 	 RESPONSIVE WEB DESIGN

hold up at different resolution ranges (fig 5.4). Browser resiz-
ing extensions, such as the one included in the Web Developer
Toolbar for Firefox and Chrome (http://bkaprt.com/rwd2/54/),
can be a huge help here; you can even store common screen
resolutions in the extension for quick access later on (fig 5.5).
But if browser extensions and whatnot aren’t your thing, you
might try Dave Rupert’s fitWeird bookmarklet (http://bkaprt.
com/rwd2/55/) or Jordan Moore’s “Responsive Roulette” viewer
(http://bkaprt.com/rwd2/56/), which, in addition to being well-
made tools, beautifully reinforce that your responsive design
could be encountered on screens of any size.

But as we discussed in the last chapter, resizing your browser
window is really an intermediary step. If you want to test how
your page is going to perform on a given device, there’s no

fig 5.4: As we’ve discussed, resizing your browser window is a great way to quickly test
your design. But it’s only the first step.

fig 5.5: The “Resize” menu in the
Web Developer Toolbar, with a few
frequently used viewport sizes.

http://bkaprt.com/rwd2/54/
http://bkaprt.com/rwd2/55/
http://bkaprt.com/rwd2/55/
http://bkaprt.com/rwd2/56/

 	 Becoming Responsive	 119	

substitute for viewing it on the actual device. (If you’re interested
in setting up a mobile testing suite, I highly recommend Peter-
Paul Koch’s A List Apart article on the “Smartphone Browser
Landscape” (http://bkaprt.com/rwd2/57/), or Brad Frost’s tips
on smartly investing in mobile devices (http://bkaprt.com/
rwd2/58/). And if you’re not interested in buying a small army
of phones and tablets and whatnot, why not use http://open
devicelab.com/ to see if there’s an open device lab near you?)

During this development process, a prototype begins to take
shape. It’s based on the initial mockup supplied by the design
team, of course, but as the development team codes they begin
making recommendations about how the design should respond
to different devices. In other words, during this collaboration
the developers act as designers, too; they’re just designing in a
different medium. They’re making design recommendations
within the browser, rather than in Photoshop—recommenda-
tions that will be shared, tested, and vetted by the entire team.

Now, the prototype doesn’t have to be completely tested or
production-ready. Because once that template’s somewhat fin-
ished, we start another design review—but this time, the design
and development teams are reviewing code, not comps.

The interactive design review

To prepare for this meeting, we’ll load up the prototype page
on several phones, tablets, laptops, and other devices (fig 5.6).
When the meeting begins, the development team will introduce
the page to the group, and then let everyone have at it. Because
during the rest of the review, the entire group experiments with
the design: on laptops and desktops, on phones and tablets. We’ll
resize our browser windows, swipe through photo galleries, and
test how usable forms are on both keyboards and touch screens.

But while everyone’s experimenting with the prototype, we
try to keep a steady flow of conversation going. I’ve found it
helps if the development team has a list of questions that came
up as they were building the responsive design. Perhaps they
noticed that a crucial link is a little too difficult to hit on a touch
screen, or a maybe an animation is moving a little too slowly
on a particular desktop browser. Calling out areas of interest or

http://bkaprt.com/rwd2/57/
http://bkaprt.com/rwd2/58/
http://bkaprt.com/rwd2/58/
http://opendevicelab.com/
http://opendevicelab.com/

	 120 	 RESPONSIVE WEB DESIGN

potential sticking points, and then asking for feedback, is a great
way to get people talking about how well the design performs,
and how it generally feels.

Because ultimately, the purpose of these reviews is to help
vet the “live” design. After all, the initial mockup was used as a
blueprint, providing layout rules, a typographic guide, and a pat-
tern library; from there, the development team was responsible
for adapting the design into its more responsive incarnation. In
other words, we’re testing the design recommendations made
by the development team, and discussing whether further re-
finement is needed. That refinement could either be a revised
mockup, or some tweaks in the template. And once the meeting
is finished, the two halves of the group decamp with their re-
spective feedback, and the process repeats itself. Review, design,
build, and repeat.

Here’s a hypothetical example of how this back-and-forth
works. Let’s say the design team has mocked up a global naviga-
tion module, which includes a couple of key links and a search
field. And with that comp in hand, the development team has
dutifully built the navigation into the template (fig 5.7).

The design’s fairly straightforward, calling for two links dis-
played inline, with the search field to their right. And in mak-
ing the design responsive, the development team settles on a
fairly modest solution for smaller displays, choosing to give the
search bar the full width of the page, and centering the two links
beneath it (fig 5.8).

fig 5.6: The devices used in the
jQuery Mobile testing suite. (Courtesy
Filament Group, Inc., http://bkaprt.
com/rwd2/59/.)

http://bkaprt.com/rwd2/59/
http://bkaprt.com/rwd2/59/

 	 Becoming Responsive	 121	

During the design review, a few design team members ask
about the smaller version of the global navigation, as some-
thing about the elements’ placement feels a bit off to them. The
search bar is considerably more prominent, sure, but some of
the folks feel that maybe it’s too prominent, crowding out the
links beneath it. And in fact, once they started interacting with
the design on touch-enabled phones, they realize it’s a little too
easy to tap into the search field when trying to activate a link.

So the coded version of the navigation isn’t quite working.
And after discussing it for a bit, the design team comes up with
an alternate solution (fig 5.9). Instead of displaying the search
bar at smaller resolutions, they decide to collapse it by default,
making it appear as though it was just another link in the menu.

fig 5.7: The “desktop”
view of the newly designed
global navigation bar.

fig 5.8: At smaller
resolution breakpoints, the
links were initially placed
beneath the search bar.

	 122 	 RESPONSIVE WEB DESIGN

But when that label is tapped or clicked on, the search bar ap-
pears as a drop-down beneath the rest of the menu (fig 5.10).

That’s just one brief example of how this more collaborative
approach can work. The key is to make this design/development
cycle as iterative as it needs to be, with both groups constantly
refining their work, and then sharing it with the group for
review. For the project I’m working on, we’ve been meeting

fig 5.10: Our finished
navigation bar, iteratively
built by designers and
developers.

fig 5.9: After discussing the problems at hand, the design team comes up with an alternate
design for our problematic little navigation bar.

 	 Becoming Responsive	 123	

weekly for our interactive design reviews, but we’re constantly
sharing sketches—whether in design or in code—via email
throughout the week.

Ultimately, the goal is to close the gap between the traditional
“design” and “development” cycles, and let the two groups col-
laborate more closely to produce a finished, responsive design.
This more agile approach has allowed the groups I’ve worked on
to use applications like Photoshop for design direction and guid-
ance, but then quickly move into our real canvas: the browser.

BEING RESPONSIVE, RESPONSIBLY
During our design/development cycle, the pages are constantly
being refined as we build them, with the goal of finishing the
phase with production-ready templates. And as we code our
responsive design, we’ve found the philosophy of “mobile first”
to be incredibly important.

Throughout the book, we’ve been using the Robot or Not
site to demonstrate how a fluid grid, flexible images, and media
queries work together to provide a more responsive approach
to design. We began by taking our rigid mockup, designed in
Photoshop, and converting it into a fluid grid. As we saw in
Chapter 4, that caused no end of problems when we started
resizing our browser window; our initial design wasn’t intended
to scale beyond its original context. So we introduced media
queries to address those issues, and to provide alternate small-
and widescreen layouts. And finally, for browsers lacking native
support for media queries, we included the respond.js library
to provide access to our alternate designs.

However, this approach raises another very real prob-
lem: what if an @media-blind browser doesn’t have access to
JavaScript? In that case, they’d be forced to render our full,
desktop-centric design, regardless of whether that’s appropri-
ate for their device. And for many mobile devices, that’s exactly
what they’d see: a design intended for a much wider screen,
shoehorned into a tiny space (fig 5.11).

And there’s another problem with the way we’ve built the
site. Here’s a brief snippet from the CSS:

	 124 	 RESPONSIVE WEB DESIGN

.blog {
 background: #F8F5F2 url("img/blog-bg.png") repeat-y;
}

@media screen and (max-width: 768px) {
 .blog {
 background: #F8F5F2 url("img/noise.gif");
 }
}

fig 5.11: No media queries? No
JavaScript? No good: our flexible,
desktop-friendly layout tries to cram
into a small space.

 	 Becoming Responsive	 125	

First, we’re setting a background image on the .blog element.
(Specifically, the two-toned blog-bg.png graphic we used in
Chapter 2 to create the illusion of two columns.) Then for small-
er displays, those narrower than 768px wide, we’re instead plac-
ing a simple tiled GIF on the blog element, since we’ve linearized
the display of those narrower pages.

The problem with this approach is that some browsers will
actually download both graphics, even if only one is ultimately
applied to the page (see developer Tim Kadlec’s tests for more
info: http://bkaprt.com/rwd2/60/). While smaller screens don’t
always equate to lower bandwidth, we might be punishing users
on smaller screens with the download of a much heavier image
than they’ll ever see.

Thankfully, these aren’t problems with responsive design
in and of itself—we just need to rethink the way we’ve imple-
mented it.

“Mobile first” meets media queries

Speaking broadly, responsive design is about starting from a
reference resolution, and using media queries to adapt it to other
contexts. A more responsible approach to responsive design
would mean building our stylesheet with “mobile first” in mind,
rather than defaulting to a desktop layout. So we’d begin by
defining a layout appropriate to smaller screens, and then use
media queries to progressively enhance our design as the reso-
lution increases.

In fact, we took this approach on the responsive site for The
Boston Globe (http://www.bostonglobe.com/). By default, the
content is arranged in a very linear manner, one friendly to
mobile devices and narrow browser windows (fig 5.12). But as
the viewport widens, the grid becomes more complex (fig 5.13).
And at the highest end of the spectrum, the “full” design finally
reveals itself: the layout becomes even more complex, making
for a truly widescreen display (fig 5.14).

The design is still responsive, using all of the techniques
we’ve discussed thus far in this book: the layout is based on

http://bkaprt.com/rwd2/60/
http://www.bostonglobe.com/

	 126 	 RESPONSIVE WEB DESIGN

a fluid grid, and the images still work well within that flexible
context. But in contrast to the Robot or Not site, we’re applying
min-width media queries to scale our design up through the
resolution spectrum. The basic structure of the stylesheet looks
something like this:

Fig 5.12: The small-screen-friendly
foundation of BostonGlobe.com:
a vertically-sorted list of tasks and
content, with very little layout to
speak of.

http://BostonGlobe.com

 	 Becoming Responsive	 127	

/* Default, linear layout */
.page {
 margin: 0 auto;
 max-width: 700px;
 background: #fff;
 position: relative;
}

/* Small screen! */
@media screen and (min-width: 480px) { … }
@media screen and (min-width: 620px) { … }
@media screen and (min-width: 810px) { … }
@media screen and (min-width: 1400px) { … }

The bulk of the stylesheet contains little else but color- and
type-related rules, providing a basic (but hopefully still attractive)

Fig 5.13: As the viewport
gets a little wider, the
bostonglobe.com layout
gets slightly more complex,
using min-width queries
to make better use of the
available space.

http://bostonglobe.com

	 128 	 RESPONSIVE WEB DESIGN

design to all users. In other words: outside of the media queries,
the stylesheet begins with a linear, small-screen-friendly design
by default, one that doesn’t have much of a layout to speak of.
But then, breakpoints are set in a series of min-width media que-
ries, for minimum viewport widths of 480px, 620px, 810px, and
1400px. And as the viewport scales up beyond those thresholds,
the appropriate layout rules are applied. The benefit to this ap-
proach? If a browser without media query support accesses the
Globe, they’re given an attractive, single-column layout if our
JavaScript patch isn’t available to them (fig 5.15).

What if we wanted to take this approach with our little Robot
site? Converting the entire design to small-screen-friendly
breakpoints is beyond the scope of this short book, but let’s
walk through a simple layout. Here’s the CSS we’re currently
using to control the two-column layout for our blog:

Fig 5.14: At wider screens, another set of min-width queries reshapes the layout again,
converting bostonglobe.com to a widescreen-friendly layout. By beginning with a small-
screen-ready layout, each breakpoint builds on the one preceding it, leaving us with an
accessible and responsive design.

http://bostonglobe.com

 	 Becoming Responsive	 129	

.blog .main {
 float: left;
 width: 62.8888889%; /* 566px / 900px */
}
.blog .other {
 float: right;
 width: 36.7777778%; /* 331px / 900px */
}
@media screen and (max-width: 768px) {
 .blog .main,
 .blog .other {
 float: none;
 width: auto;
 }
}

Fig 5.15: No media queries? No JavaScript? No problem: designing for the small screen first
means every browser is left with an accessible design, regardless of the size of its screen.

	 130 	 RESPONSIVE WEB DESIGN

In other words, our .main and .other elements—the blog entry,
and the list of recent entries that follows it—are floated columns
by default, unless the viewport is narrower than 768px. (@media
screen and (max-width: 768px) { … }.) If it falls below that
threshold, we disable our floats, set the width of the two ele-
ments back to auto, and allow them to stack vertically on smaller
screens. (fig 5.16)

But what if we wanted to adopt a more “mobile first” ap-
proach to this same layout? Thankfully, it’s easily done:

@media screen and (min-width: 768px) {
 .blog .main {
 float: left;
 width: 62.8888889%; /* 566px / 900px */
 }
 .blog .other {
 float: right;
 width: 36.7777778%; /* 331px / 900px */
 }
}

Fig 5.16: Our blog layout now defaults to a linear, small-screen-friendly design, but then
moves to a two-column layout only when seen above a certain viewport width. The result
is the same, but the code is much more accessible.

 	 Becoming Responsive	 131	

All we’ve done is take the floats and widths for our two-column
layout, and moved them into a min-width media query—not a
max-width query, as we did before. The result is that the two-
column layout will apply only if the screen is at least 768px wide.
In other words, we’re not using our media query to override
rules from wider breakpoints; we’re using it to layer complexity
onto our design as viewports gradually widen. While the two
approaches are visually similar, this “mobile first” approach
to building responsive templates ensures greater accessibility
to our content, but doesn’t make any assumptions about the
capabilities of the device or browser rendering our design. And
after adopting it for my client projects, I’ve found it’s the best,
most bulletproof way to implement your responsive designs.

REVISITING PROGRESSIVE ENHANCEMENT
A more thorough implementation of this approach would be the
responsive redesign of The Guardian (http://www.theguardian.
com/), which is, at the time of this book’s writing, in a public
beta (fig 5.17). (If you’re on a non-mobile device, select the
“Beta” link from the site’s header to see the new responsive beta.)
In a conference presentation (http://bkaprt.com/rwd2/61/), The
Guardian’s Matt Andrews discussed the various ways in which
responsive design changed the way their team collaborated. And
there were a number of changes—from design to development,
from project planning to internal communication. But for them,
one of the most critical ideas was this:

The first step in rethinking the web for the future is accepting
that making things look exactly the same across all browsers is
an idea best left to the past.

The language is different, of course, but it overlaps beautifully
with Nick Finck and Steven Champeon’s original definition of
“progressive enhancement” (http://bkaprt.com/rwd2/62/):

Rather than hoping for graceful degradation, progressive
enhancement builds documents for the least capable or
differently capable devices first, then moves on to enhance

http://www.theguardian.com/
http://www.theguardian.com/
http://bkaprt.com/rwd2/61/
http://bkaprt.com/rwd2/62/

	 132 	 RESPONSIVE WEB DESIGN

those documents with separate logic for presentation, in ways
that don’t place an undue burden on baseline devices but which
allow a richer experience for those users with modern graphical
browser software.

Since Nick and Steven coined the term in 2003, progressive en-
hancement has been the hallmark of the responsible approach
to standards-based web design. By beginning with a foundation
of semantic, well-structured markup, styling with a layer of CSS,
and adding DOM scripting via JavaScript as needed, we can cre-
ate compelling experiences in capable browsers, while ensuring
universal access to the content beneath the design.

In fact, progressive enhancement has been the cornerstone
for most modern responsive designs. Take the BBC News web-
site, for example: they’ve been experimenting with responsive

Fig 5.17: Regardless of how wide or small your screen might be, or how modern or ancient
your browser happens to be, The Guardian’s new responsive site is at once accessible and
beautiful.

 	 Becoming Responsive	 133	

design in public at http://m.bbc.com/news/, only allowing “mo-
bile” devices to access the responsive site (fig 5.18). In time, that
responsive prototype will become the default experience for
all their visitors—mobile, tablet, desktop, and whatever comes
next. (In fact, by the time you read this, it might be the default
experience already. Books are weird that way.)

The BBC News team is designing responsively on a massive
scale, planning for a site that will work on the latest iOS and
Android devices—as well as less capable smartphones in de-
veloping markets. And the key of their strategy is progressive
enhancement: of letting even the lowest-end devices access the
new responsive site, but conditionally enhancing up to an en-
riched experience. In 2012, they took to their development blog
(http://bkaprt.com/rwd2/63/) to describe how they responsively
design for a complex, sprawling device landscape:

Fig 5.18: The new responsive BBC News site isn’t just accessible to differently sized
screens, but to high- and low-end devices and browsers alike.

http://m.bbc.com/news/
http://bkaprt.com/rwd2/63/

	 134 	 RESPONSIVE WEB DESIGN

We have ~80 significant browsers / operating system
combinations regularly using our application across the globe
and a long tail of hundreds more.… We make this manageable
in the same [way] you and everyone else in the industry does
it: by having a lowest common denominator and developing
towards that. So we’ve taken the decision to split the entire
browser market into two, which we are currently calling “feature
browsers” and “smart browsers”.

…
The first tier of support we call the core experience. This

works on everything.… As the application loads we earmark
incapable browsers with [some inline code] and exclude the bulk
of the Javascript powered UI from them, leaving them with clean,
concise, core experience.

In other words, the BBC News team isn’t designing for specific
platforms, or even focusing on device classes. Instead, they’re
designing for experience tiers: a basic design served to every
device; and a more enhanced version, conditionally served to
more capable browsers. The result is a responsive design that
loads quickly in every HTML-capable device, but then upgrades
to a more robust interface—but only if the browser is deemed
capable of handling the more enhanced experience (fig 5.19).
And this progressive enhancement-driven approach has been
the foundation of some of the largest responsive designs, in-
cluding responsive sites like The Boston Globe and The Guardian.

Stephen Hay reiterated the need for progressive enhance-
ment as well, in his fantastic essay “There is no Mobile Web”
(http://bkaprt.com/rwd2/65/):

Most sites on the web are not built with specific mobile use-cases
in mind. However, millions of people access these sites every day
through mobile devices. They access a “normal” (whatever that
means) website through their “mobile” device.

…
To be honest, I can think of a few, but not many use cases

of web sites or apps which are or should be exclusively mobile.

http://bkaprt.com/rwd2/65/

 	 Becoming Responsive	 135	

It seems like the Mobile Web allows us to revisit all of the talk
of inclusion, progressive enhancement, and accessibility from
years ago.

Ever have one of those moments where someone else perfectly
expresses why you believe in something? Stephen’s essay man-
ages to capture exactly why I’m excited about responsive web
design. Rather than simply siloing our content into different,
device-specific sites, we can use progressive enhancement to
ensure quality access for all, with an enhanced experience for
those devices that are capable of it.

Fig 5.19: By building with progressive enhancement, the responsive BBC News site doesn’t
have to focus on individual devices or platforms; instead, they can design for broad
experience tiers. (Source: http://bkaprt.com/rwd2/64/)

http://bkaprt.com/rwd2/64/

	 136 	 RESPONSIVE WEB DESIGN

Working with JavaScript

To put this to the test, let’s take a look at the slideshow at the
top of the Robot or Not site (fig 5.20). Currently, the markup
looks like this:

<div class="slides">
 <div class="figure">

 <div class="figcaption">…</div>
 </div><!-- /end .figure -->

 <ul class="carousel-nav">
 Previous
 Next

</div><!-- /end .slides -->

Not too fancy. But also, not too functional: we’ve marked
up the interface for a slideshow, but it isn’t implemented yet.
We’ve included a single slide in our template, as well as the
previous/next navigation. But clicking on those links won’t do
a darned thing.

fig 5.20: Our slideshow. Or at least, a completely non-functional facsimile thereof.

 	 Becoming Responsive	 137	

So, we’ll need to introduce a bit of JavaScript, and bring some
interactivity into our design. But first, we need slides! So, let’s
grab some more images, and augment our HTML a bit:

<div class="slides">
 <div class="figure">

 <div class="figcaption">…</div>
 </div><!-- /end .figure -->
 <div class="figure">

 <div class="figcaption">…</div>
 </div><!-- /end .figure -->
</div><!-- /end .slides -->

Let’s drop in four more slides, using the same .figure mark-
up pattern as before. I’ve also deleted the .carousel-nav ele-
ment that housed our previous and next links, as we’ll be adding
that dynamically through our JavaScript.

So, yes, this looks a little weird right now, as our slides are
currently just stacked on top of each other (fig 5.21). To get our
slideshow up and running, we’ll be using a free jQuery plugin
designed by Filament Group (http://bkaprt.com/rwd2/66/). It’s
one of the more robust slideshow scripts I’ve used. I like it
because it works incredibly well with flexible content; if your
slides have different amounts of text or images in them, this plu-
gin handles them with ease—all without resorting to convoluted
CSS foofery. (Oh, yes. I said “foofery.” I’m not messing around.)

So to work the carousel script into the page, I’m going to add
three new script elements to our HTML:

<script src="jquery.js"></script>
<script src="carousel.js"></script>
<script src="core.js"></script>

Since the carousel script requires jQuery to run, I’ve down-
loaded the library from http://jquery.com/ and placed it in the
head of the page (jquery.js), followed by the carousel script

http://bkaprt.com/rwd2/66/
http://jquery.com/

	 138 	 RESPONSIVE WEB DESIGN

(carousel.js), and a file called core.js, which is where we’ll
actually write the code for our slideshow.

And actually, it’s fairly easy to do. Inside of core.js, let’s
write the following:

(function($) {
 $(function(){
 $(".welcome .slides").carousel();
 });
}(jQuery));

fig 5.21: New slides: we
add them. Stacked images:
we hate them.

 	 Becoming Responsive	 139	

Now, if you’re not completely comfortable with JavaScript,
or haven’t used jQuery before, that’s okay. The script above is
just doing two different things:

1.	First, it locates the div.slides element inside of the .welcome
module, using jQuery’s very CSS-friendly selector syntax.
($(".welcome .slides")).

2.	Once it has located that element, our script runs the
.carousel() function, creating the slideshow.

And with those five short lines of JavaScript, we’ve got a working
slideshow (fig 5.22). Success!

Lazily (but intelligently) loading content

Or at least, it’s a starting point. If we disable JavaScript in the
browser, we’re back to where we were before: with a whole
mess of slides stacked on top of each other. So for any visitor
to our site that doesn’t have JavaScript available to them, the
experience quickly becomes decidedly un-great.

So let’s do something about that. In fact, let’s get a bit tricky:
we’re going to remove all but one of the slides from the page,
and put them in a separate HTML file. So now, our page’s source
looks considerably lighter:

fig 5.22: The slideshow lives. It lives!

	 140 	 RESPONSIVE WEB DESIGN

<div class="slides">
 <div class="figure">

 <div class="figcaption">…</div>
 </div><!-- /end .figure -->
</div><!-- /end .slides -->

However, we’ve created a separate file (let’s call it slides.html),
and pasted in the markup for our four remaining slides:

<div class="figure">

 <div class="figcaption">…</div>
</div><!-- /end .figure -->
<div class="figure">

 <div class="figcaption">…</div>
 …
</div><!-- /end .figure -->

You’ve probably noticed that slides.html isn’t even a valid
HTML document. In fact, it’s more like a markup stub, a mini-
document we can use to store some HTML for later use. In fact,
we’ll just use jQuery to open slides.html and load the images
into the slideshow, like so:

(function($) {
 $(function(){
 $.get("-/ajax/slides.html", function(data) {
 $(".welcome .slides")
 .append(data)
 .carousel();
 });
 });
}(jQuery));

And that’s that. The jQuery .get() function opens our HTML
snippet (slides.html), and inserts its contents into our module
by using append(). If JavaScript isn’t available, or if jQuery can’t

 	 Becoming Responsive	 141	

load that file, then the user is presented with a single image at
the top of the page: a perfectly acceptable fallback for our design
(fig 5.23).

Further improvements

We’ve augmented our simple slideshow script with consider-
ably more code, but the end result is a much more robust and
accessible experience. We’re not assuming anything about the
capabilities of the browser or device rendering our page: if
JavaScript is available to them, then our slideshow will appear.

But there’s always room for improvement—and this rough
little prototype is no exception. For example, we could poten-
tially restrict our slideshow to only appear on certain types of
displays, making the script resolution dependent. For example, if

fig 5.23: No JavaScript? No problem. Our slideshow degrades to a single image, which
looks just grand.

	 142 	 RESPONSIVE WEB DESIGN

we wanted to prevent it from loading at all on smaller screens,
we could work a simple resolution test into our script:

if (document.documentElement.clientWidth >= 500) {
 $(document).ready(function() { … });
}

That opening if statement is the JavaScript equivalent of a min-
width: 500px media query: if the screen is narrower than 500
pixels, then the enclosed JavaScript won’t fire (fig 5.24). And
while we’re being bandwidth-conscientious, I’d probably use
the new picture element—with support patched in via Filament
Group’s picturefill.js library (http://bkaprt.com/rwd2/67/)—
which would allow us to serve lighter, more bandwidth-friendly
images to smaller displays, with the full-sized images served only
to wider screens.

And we could refine this approach further. For example:
instead of including three script elements in our HTML, we
would ideally use a lightweight JavaScript loader like LabJS
(http://labjs.com/) or yepnope (http://yepnopejs.com/) to
dynamically load jQuery, the carousel plugin, and our own

fig 5.24: We’ve decided that our slideshow will only be available to browsers wider than
480px. Smaller screens get a single image.

http://bkaprt.com/rwd2/67/
http://labjs.com/
http://yepnopejs.com/

 	 Becoming Responsive	 143	

custom.js—perhaps including them only if the user’s browser
is sufficiently advanced. That would help ensure that users on
less capable devices aren’t saddled with the overhead of down-
loading all that JavaScript, especially if the carousel wouldn’t
work well for them.

GO FORTH AND BE RESPONSIVE
I mention these enhancements not because they’re necessar-
ily the right approach; in the age of portable 3G hotspots and
wifi-enabled phones, it’s dangerous to automatically equate a
screen’s dimensions with the bandwidth available to it. But if
you need an extra level of resolution awareness in your work,
these tools are available.

Still, I find it helpful to keep Luke’s “mobile first” philoso-
phy in mind when I’m faced with a particularly involved bit of
functionality. If I’m disabling a tricky interface for mobile users,
then why is there value in it for the rest of my audience? If that
sounds like a loaded question, it’s not meant to be: there aren’t
any easy answers here.

Because more than anything, web design is about asking the
right questions. And really, that’s what responsive web design
is: a possible solution, a way to more fully design for the web’s
inherent flexibility. In the first chapter, I said that the ingredients
for a responsive design were a fluid grid, flexible images, and
media queries. But really, they’re just the vocabulary we’ll use to
articulate answers to the problems our users face, a framework
for ordering content in an ever-increasing number of devices
and browsers.

If we’re willing to research the needs of our users, and ap-
ply those ingredients carefully, then responsive web design is a
powerful approach indeed.

I can’t wait to see the stories you’ll tell with it.

	 144 	 RESPONSIVE WEB DESIGN

ACKNOWLEDGEMENTS
I don’t have the words—or the space—to properly thank the
people that have influenced my work, let alone this little book.
Still, I have to try.

First and foremost, I’m impossibly grateful to A Book Apart
for being interested in responsive design, and for offering me
the chance to write my first solo book. Jason Santa Maria’s at-
tention to detail and quality is unparalleled. Katel LeDu kept
me focused, on-track, and laughing, and always keeps a steady
hand at A Book Apart’s prow. Mandy Brown is an impossibly
incisive editor, and I feel so lucky to have had her help and
patience in shaping not just this book, but my first article on
responsive design.

And of course, my heartfelt thanks to Jeffrey Zeldman: for his
impassioned writing and tireless work, and for the opportunities
they’ve afforded me over the years.

Karen McGrane, Peter-Paul Koch, Bryan and Stephanie
Rieger, Jason Grigsby, and Stephen Hay have taught me much
of what I know about designing for mobile, and improved my
thinking about responsive design in countless subtle, significant
ways. And for any design project, responsive or otherwise, Luke
Wroblewski’s work on “mobile first” is invaluable.

Khoi Vinh and Mark Boulton have taught our community—
and me—much about the history behind our craft. What’s more,
a fluid grid would never have proven feasible without Richard
Rutter’s early research.

If I hadn’t read John Allsopp’s magnificent “A Dao Of Web
Design” over a decade ago, my understanding of the web
would be drastically different, and this book would have never
happened.

David Sleight and the team at Filament Group provided in-
dispensable feedback on an early draft of the book.

I’m impossibly grateful Anna Debenham agreed to act as tech
editor for this second edition of the book. This little yellow book
has been made all the stronger for her tireless efforts, brilliant
ideas, and wonderful questions.

Dan Cederholm’s technical edit of the first edition was
thoughtful, thorough, and hilarious. Just like him.

 	 Acknowledgments	 145	

I can’t quite articulate how honored I am that Jeremy Keith
agreed to write the foreword. Hell, “honored” doesn’t even
adequately cover it.

If I can form a decent sentence from time to time, it’s because
of Garret Keizer.

My family—my parents, my brothers, my sisters, and my
grandmother—were there for me throughout the writing pro-
cess. I love you guys.

And finally, to my wife Elizabeth. This book, and everything
else, is for her.

	 146 	 RESPONSIVE WEB DESIGN

RESOURCES
For a more complete history behind the typographic grid, I’d
suggest the following:

•	 Wikipedia’s entry on the canons of page construction: http://
bkaprt.com/rwd2/68/

•	 The New Typography by Jan Tschichold (Second Edition,
University of California Press, 2006): http://bkaprt.com/
rwd2/69/

•	 Grid Systems in Graphic Design by Josef Müller-Brockmann
(Verlag Niggli AG): http://bkaprt.com/rwd2/70/

In looking at how grids apply specifically to web design, I’d
suggest:

•	 Ordering Disorder: Grid Principles for Web Design by Khoi Vinh
(New Riders Press, 2010): http://bkaprt.com/rwd2/71/

•	 A Practical Guide to Designing Grid Systems for the Web by Mark
Boulton (Five Simple Steps, forthcoming): http://bkaprt.com/
rwd2/72/

•	 Mark Boulton’s blog entry, “A Richer Canvas”: http://bkaprt.
com/rwd2/73/

•	 The Grid System: http://bkaprt.com/rwd2/74/
•	 My article for A List Apart on “Fluid Grids”: http://bkaprt.

com/rwd2/75/

Looking for a reference on media queries? While the following
two links are somewhat tech-y, I think they’re still accessible,
fantastic reads:

•	 The W3C’s media query specification: http://bkaprt.com/
rwd2/76/

•	 Mozilla’s developer reference on media queries: http://bkaprt.
com/rwd2/77/

If you’re working with images and other media in a flexible
context, I recommend checking out:

http://bkaprt.com/rwd2/68/
http://bkaprt.com/rwd2/68/
http://bkaprt.com/rwd2/69/
http://bkaprt.com/rwd2/69/
http://bkaprt.com/rwd2/70/
http://bkaprt.com/rwd2/71/
http://bkaprt.com/rwd2/72/
http://bkaprt.com/rwd2/72/
http://bkaprt.com/rwd2/73/
http://bkaprt.com/rwd2/73/
http://bkaprt.com/rwd2/74/
http://bkaprt.com/rwd2/75/
http://bkaprt.com/rwd2/75/
http://bkaprt.com/rwd2/76/
http://bkaprt.com/rwd2/76/
http://bkaprt.com/rwd2/77/
http://bkaprt.com/rwd2/77/

 	 Resources	 147	

•	 Filament Group’s “Compressive Images” technique: http://
bkaprt.com/rwd2/78/

•	 Richard Rutter’s original image resizing experiments: http://
bkaprt.com/rwd2/79/

•	 Filament Group’s Picturefill library: http://bkaprt.com/
rwd2/80/, with the related blog entry: http://bkaprt.com/
rwd2/81/

For more information to help you decide when and how to
adopt a responsive approach, I’d recommend:

•	 John Allsopp’s seminal “A Dao of Web Design”: http://bkaprt.
com/rwd2/82/

•	 Luke Wroblewski’s articles on “mobile first”: http://bkaprt.
com/rwd2/52/, with related readings available http://bkaprt.
com/rwd2/83/

•	 Jeremy Keith’s “One Web”: http://bkaprt.com/rwd2/84/ and
“Context”: http://bkaprt.com/rwd2/85/

•	 Tim Kadlec’s entry on “Responsive Web Design and Mobile
Context”: http://bkaprt.com/rwd2/86/

•	 Josh Clark (http://bkaprt.com/rwd2/87/) and Jason Grigsby
(http://bkaprt.com/rwd2/88/) round up some great discus-
sions to help you decide when a responsive approach is
appropriate, and for which projects. (You should be reading
Josh and Jason’s blogs anyway.)

•	 My own blog entries on “With Good References” (http://
bkaprt.com/rwd2/89/), “Toffee-Nosed” (http://bkaprt.com/
rwd2/90/), and “Responsive design, screens, and shearing
layers” (http://bkaprt.com/rwd2/91/).

http://bkaprt.com/rwd2/78/
http://bkaprt.com/rwd2/78/
http://bkaprt.com/rwd2/79/
http://bkaprt.com/rwd2/79/
http://bkaprt.com/rwd2/80/
http://bkaprt.com/rwd2/80/
http://bkaprt.com/rwd2/81/
http://bkaprt.com/rwd2/81/
http://bkaprt.com/rwd2/82/
http://bkaprt.com/rwd2/82/
http://bkaprt.com/rwd2/52/
http://bkaprt.com/rwd2/52/
http://bkaprt.com/rwd2/83/
http://bkaprt.com/rwd2/83/
http://bkaprt.com/rwd2/84/
http://bkaprt.com/rwd2/85/
http://bkaprt.com/rwd2/86/
http://bkaprt.com/rwd2/87/
http://bkaprt.com/rwd2/88/
http://bkaprt.com/rwd2/89/
http://bkaprt.com/rwd2/89/
http://bkaprt.com/rwd2/90/
http://bkaprt.com/rwd2/90/
http://bkaprt.com/rwd2/91/

	 148 	 RESPONSIVE WEB DESIGN

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Chapter 1

	 1	 http://craigmod.com/journal/post_artifact/

	 2	 https://www.flickr.com/photos/carabanderson/3033798968/

	 3	 http://alistapart.com/article/dao

	 4	 http://money.cnn.com/2014/02/28/technology/mobile/
mobile-apps-internet/

	 5	 https://speakerdeck.com/anna/playing-with-game-console-
browsers?slide=6

	 6	 http://vimeo.com/14899669

	 7	 http://vimeo.com/14899445

	 8	 http://www.smartglassinternational.com/

	 9	 http://vimeo.com/4661618

	 10	 https://gitlab.com/beep/rwd-samplefiles

Chapter 2

	 11	 http://meyerweb.com/eric/tools/css/reset/

Chapter 3

	 12	 https://www.flickr.com/photos/uberculture/1385828839/

	 13	 http://clagnut.com/sandbox/imagetest/

	 14	 http://www.cameronmoll.com/archives/000892.html

	 15	 http://msdn.microsoft.com/en-us/library/ms532969.aspx

	 16	 http://www.dillerdesign.com/experiment/DD_belatedPNG/

	 17	 http://msdn.microsoft.com/en-us/library/ms532920%28VS.85%29.aspx

	 18	 http://unstoppablerobotninja.com/entry/fluid-images/

	 19	 http://www.yuiblog.com/blog/2008/12/08/imageopt-5/

	 20	 http://alistapart.com/article/fauxcolumns

	 21	 http://stopdesign.com/archive/2004/09/03/liquid-bleach.html

	 22	 http://www.w3.org/TR/css3-background/#the-background-size

	 23	 http://srobbin.com/jquery-plugins/backstretch/

http://craigmod.com/journal/post_artifact/
https://www.flickr.com/photos/carabanderson/3033798968/
http://alistapart.com/article/dao
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
https://speakerdeck.com/anna/playing-with-game-console-browsers?slide=6
https://speakerdeck.com/anna/playing-with-game-console-browsers?slide=6
http://vimeo.com/14899669
http://vimeo.com/14899445
http://www.smartglassinternational.com/
http://vimeo.com/4661618
https://gitlab.com/beep/rwd-samplefiles
http://meyerweb.com/eric/tools/css/reset/
https://www.flickr.com/photos/uberculture/1385828839/
http://clagnut.com/sandbox/imagetest/
http://www.cameronmoll.com/archives/000892.html
http://msdn.microsoft.com/en-us/library/ms532969.aspx
http://www.dillerdesign.com/experiment/DD_belatedPNG/
http://msdn.microsoft.com/en-us/library/ms532920%28VS.85%29.aspx
http://unstoppablerobotninja.com/entry/fluid-images/
http://www.yuiblog.com/blog/2008/12/08/imageopt-5/
http://alistapart.com/article/fauxcolumns
http://stopdesign.com/archive/2004/09/03/liquid-bleach.html
http://www.w3.org/TR/css3-background/#the-background-size
http://srobbin.com/jquery-plugins/backstretch/

 	 References	 149	

	 24	 http://www.bbc.co.uk/news/technology-11948680

	 25	 http://scottjehl.github.io/picturefill/

Chapter 4

	 26	 http://www.w3.org/TR/CSS2/media.html

	 27	 http://alistapart.com/article/goingtoprint

	 28	 http://www.w3.org/TR/CSS21/media.html#media-types

	 29	 http://www.w3.org/TR/css3-mediaqueries/

	 30	 http://www.w3.org/TR/css3-mediaqueries/#media1

	 31	 https://developer.apple.com/library/safari/documentation/
appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html

	 32	 https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_
tag#Viewport_basics

	 33	 https://www.theleagueofmoveabletype.com/league-gothic

	 34	 http://windows.microsoft.com/en-us/internet-explorer/download-ie

	 35	 http://ie.microsoft.com/testdrive/HTML5/CSS3MediaQueries/

	 36	 http://www.quirksmode.org/mobile/#t14

	 37	 http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-
windows-phone-in-2011.aspx

	 38	 http://www.quirksmode.org/m/css.html#t021

	 39	 https://github.com/scottjehl/Respond

	 40	 https://twitter.com/jaffathecake/status/207096228339658752

	 41	 http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-
in-iterations

	 42	 https://plus.google.com/+VladFilippov/posts/EPcJCN4VSi3

	 43	 https://speakerdeck.com/grigs/the-immobile-web

	 44	 http://hicksdesign.co.uk/journal/finally-a-fluid-hicksdesign

	 45	 https://thethemefoundry.com/wordpress-themes/shelf/

Chapter 5

	 46	 http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-
wide-one/

	 47	 http://jeffcroft.com/blog/2010/aug/06/responsive-web-design-and-
mobile-context/

	 48	 http://thefonecast.com/Home/tabid/61/ArticleID/3602/ArtMID/538/
Default.aspx

	 49	 http://www.lukew.com/ff/entry.asp?1263

http://www.bbc.co.uk/news/technology-11948680
http://scottjehl.github.io/picturefill/
http://www.w3.org/TR/CSS2/media.html
http://alistapart.com/article/goingtoprint
http://www.w3.org/TR/CSS21/media.html#media-types
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/#media1
https://developer.apple.com/library/safari/documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.apple.com/library/safari/documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag#Viewport_basics
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag#Viewport_basics
https://www.theleagueofmoveabletype.com/league-gothic
http://windows.microsoft.com/en-us/internet-explorer/download-ie
http://ie.microsoft.com/testdrive/HTML5/CSS3MediaQueries/
http://www.quirksmode.org/mobile/#t14
http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-windows-phone-in-2011.aspx
http://blogs.msdn.com/b/iemobile/archive/2011/02/14/ie9-coming-to-windows-phone-in-2011.aspx
http://www.quirksmode.org/m/css.html#t021
https://github.com/scottjehl/Respond
https://twitter.com/jaffathecake/status/207096228339658752
http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-in-iterations
http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-in-iterations
https://plus.google.com/+VladFilippov/posts/EPcJCN4VSi3
https://speakerdeck.com/grigs/the-immobile-web
http://hicksdesign.co.uk/journal/finally-a-fluid-hicksdesign
https://thethemefoundry.com/wordpress-themes/shelf/
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/
http://jeffcroft.com/blog/2010/aug/06/responsive-web-design-and- mobile-context/
http://jeffcroft.com/blog/2010/aug/06/responsive-web-design-and- mobile-context/
http://thefonecast.com/Home/tabid/61/ArticleID/3602/ArtMID/538/Default.aspx
http://thefonecast.com/Home/tabid/61/ArticleID/3602/ArtMID/538/Default.aspx
http://www.lukew.com/ff/entry.asp?1263

	 150 	 RESPONSIVE WEB DESIGN

	 50	 http://www.comscore.com/Insights/Blog/The_Rise_of_Digital_Omnivores

	 51	 https://www.flickr.com/photos/merlin/sets/72157622077100537/

	 52	 http://www.lukew.com/ff/entry.asp?933

	 53	 http://www.lukew.com/ff/entry.asp?1117

	 54	 http://chrispederick.com/work/web-developer/

	 55	 http://davatron5000.github.io/fitWeird/

	 56	 http://www.jordanm.co.uk/lab/responsiveroulette

	 57	 http://alistapart.com/article/smartphone-browser-landscape

	 58	 http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-
breaking-the-bank/

	 59	 https://www.flickr.com/photos/filamentgroup/5149016958/

	 60	 http://timkadlec.com/2012/04/media-query-asset-downloading-results/

	 61	 http://mattandrews.info/talks/canvasconf-2013/

	 62	 http://www.hesketh.com/thought-leadership/our-publications/inclusive-
web-design-future

	 63	 http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

	 64	 http://mobiletestingfordummies.tumblr.com/post/20056227958/testing

	 65	 http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/

	 66	 https://github.com/filamentgroup/responsive-carousel

	 67	 https://github.com/filamentgroup/picturefill

Resources

	 68	 https://en.wikipedia.org/wiki/Canons_of_page_construction

	 69	 http://www.worldcat.org/oclc/70399614

	 70	 http://www.worldcat.org/oclc/781678237

	 71	 http://www.worldcat.org/oclc/639165178

	 72	 http://www.worldcat.org/oclc/713636248

	 73	 http://www.markboulton.co.uk/journal/a-richer-canvas

	 74	 http://www.thegridsystem.org/

	 75	 http://alistapart.com/article/fluidgrids

	 76	 http://www.w3.org/TR/css3-mediaqueries/

	 77	 https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries

	 78	 http://filamentgroup.com/lab/rwd_img_compression/

	 79	 http://clagnut.com/blog/268/

	 80	 http://picturefill.responsiveimages.org/

	 81	 http://filamentgroup.com/lab/picturefill_2_a/

	 82	 http://alistapart.com/article/dao

	 83	 http://www.lukew.com/ff/archive.asp?tag&mobilefirst

http://www.comscore.com/Insights/Blog/The_Rise_of_Digital_Omnivores
https://www.flickr.com/photos/merlin/sets/72157622077100537/
http://www.lukew.com/ff/entry.asp?933
http://www.lukew.com/ff/entry.asp?1117
http://chrispederick.com/work/web-developer/
http://davatron5000.github.io/fitWeird/
http://www.jordanm.co.uk/lab/responsiveroulette
http://alistapart.com/article/smartphone-browser-landscape
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank/
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank/
https://www.flickr.com/photos/filamentgroup/5149016958/
http://timkadlec.com/2012/04/media-query-asset-downloading-results/
http://mattandrews.info/talks/canvasconf-2013/
http://www.hesketh.com/thought-leadership/our-publications/inclusive-web-design-future
http://www.hesketh.com/thought-leadership/our-publications/inclusive-web-design-future
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://mobiletestingfordummies.tumblr.com/post/20056227958/testing
http://www.the-haystack.com/2011/01/07/there-is-no-mobile-web/
https://github.com/filamentgroup/responsive-carousel
https://github.com/filamentgroup/picturefill
https://en.wikipedia.org/wiki/Canons_of_page_construction
http://www.worldcat.org/oclc/70399614
http://www.worldcat.org/oclc/781678237
http://www.worldcat.org/oclc/639165178
http://www.worldcat.org/oclc/713636248
http://www.markboulton.co.uk/journal/a-richer-canvas
http://www.thegridsystem.org/
http://alistapart.com/article/fluidgrids
http://www.w3.org/TR/css3-mediaqueries/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
http://filamentgroup.com/lab/rwd_img_compression/
http://clagnut.com/blog/268/
http://picturefill.responsiveimages.org/
http://filamentgroup.com/lab/picturefill_2_a/
http://alistapart.com/article/dao
http://www.lukew.com/ff/archive.asp?tag&mobilefirst

 	 References	 151	

	 84	 http://adactio.com/journal/1716/

	 85	 http://adactio.com/journal/4443/

	 86	 http://timkadlec.com/2011/03/responsive-web-design-and-mobile-context/

	 87	 http://globalmoxie.com/blog/mobile-web-responsive-design.shtml

	 88	 http://blog.cloudfour.com/weekend-reading-responsive-web-design-and-
mobile-context/

	 89	 http://unstoppablerobotninja.com/entry/with-good-references/

	 90	 http://unstoppablerobotninja.com/entry/toffee-nosed/

	 91	 http://unstoppablerobotninja.com/entry/responsive-web-design-screens-
and-shearing-layers/

http://adactio.com/journal/1716/
http://adactio.com/journal/4443/
http://timkadlec.com/2011/03/responsive-web-design-and-mobile-context/
http://globalmoxie.com/blog/mobile-web-responsive-design.shtml
http://blog.cloudfour.com/weekend-reading-responsive-web-design-and-mobile-context/
http://blog.cloudfour.com/weekend-reading-responsive-web-design-and-mobile-context/
http://unstoppablerobotninja.com/entry/with-good-references/
http://unstoppablerobotninja.com/entry/toffee-nosed/
http://unstoppablerobotninja.com/entry/responsive-web-design-screens-and-shearing-layers/
http://unstoppablerobotninja.com/entry/responsive-web-design-screens-and-shearing-layers/

	 152 	 RESPONSIVE WEB DESIGN

.get() 140

A
A List Apart 119, 146
Allsopp, John 7, 144, 147
AlphaImageLoader 54–56
Andrews, Matt 131
Android 100, 104, 133
append() 140
Apple 79, 82

B
background images 56–60
background-position 60
background-size 60–61
Backstretch (plugin) 61
Basecamp 102–03
BBC News 13, 133–35
Boston Globe, The 13, 104, 125–131
Boulton, Mark 18, 146
Bowman, Doug 58
browser support for media queries 99

C
Cederholm, Dan 56, 60, 104–05
Champeon, Steven 131
Chimero, Frank 12, 104, 105
Cog’aoke 112–113
columns, setting 29–31
Coop 14
Croft, Jeff 109
css3-mediaqueries.js 101

D
Dao De Jing 108
DD_belatedPNG library 54
Diller, Drew 54
Disney 15
display area 78–79
display: none 113

E
Expedia 14

F
Filament Group 137
Finck, Nick 131
Fisher, Meagan 12
fitWeird (bookmarklet) 118
fluid grids 27–44
font-size 22–25, 74–77, 107
Frost, Brad 119
Frost, Robert 3

G
Galaxy Tab 103
George & Jonathan 15
Grid Systems in Graphic Design 18,

146
Guardian, The 13, 131–32

H
Happy Cog 104–05
Hay, Stephen 134
Hicks, Jon 104, 106–107

I
images 45–49
initial-scale 83–84
interactive design reviews 119–123
Internet Explorer 9–15, 51–56, 100–101
iPad 79, 85, 111
iPhone 77, 82–84

J
Jehl, Scott 65, 101
jQuery 137–143
jQuery Backstretch plugin 61

INDEX

 	 Index	 153	

K
Kadlec, Tim 125
Kindle 103, 104
Koch, Peter-Paul 100, 119

L
League Gothic 84–86

M
Mann, Merlin 113
margins 36–39
max-width: 100% 48–55, 62–65
media types 74–77
Meyer, Eric 22
mobile first 113–115
Mobile Safari 82, 84, 100
mobile websites 8, 110–11
Mod, Craig 3
Modernist period 17–18
Modernizr 61
Moore, Jordan 118
Mozilla 84, 100, 146
Müller-Brockmann, Josef 18, 146

N
negative margins 42
“Noise to Noise Ratio” Flickr set 113

O
Opera Mini 100
Opera Mobile 100
orientation 79, 80
overflow 61–63
overflow: hidden 62, 91

P
padding 36–41
Pearce, James 109
proportional widths 32–36
prototyping 116–19

R
reference resolution 125
rendering surface 78–81
reset stylesheet 21–22
respond.js 101
responsive architecture 9
Responsive Roulette viewer 118
Robbin, Scott 61
Romantic period 17–18
Ruder, Emil 18
Rupert, Dave 118
Rutter, Richard 48, 62, 144, 147

S
sizingMethod 54–55
Skinny Ties 14
Stefanov, Stoyan 55

T
target ÷ context = result 23–24, 34–36,

44, 58
Time.com 13
Tschichold, Jan 18, 146
typographic grid 18–19, 146

V
viewport meta element 82–83
Vinh, Khoi 18, 146
Voltron 116

W
W3C 74–75, 77, 146
Walmart.ca 14
Walton, Trent 12
Web Developer Toolbar 118
webOS 100
width=device-width 83–84
Windows Phone 100
Wren, Christopher 9
Wroblewski, Luke 114–15, 147

ABOUT THE AUTHOR

Ethan Marcotte is an inde-
pendent designer and au-
thor, based in Cambridge,
Massachusetts. He coined
the term “responsive web
design” to describe a new
way of designing for the
ever-changing Web. His
speaking and writing on
the topic have been wide-
ly praised, as they demon-
strate how designers and
organizations can leverage

the Web’s flexibility to design across mobile, tablet, and desk-
top—and whatever might come next.

Over the years, Ethan has been a featured speaker at many
conferences, including An Event Apart, SXSW Interactive, and
Webstock. His clientele has included New York Magazine, the
Sundance Film Festival, The Boston Globe, and People Magazine.
He also cofounded Editorially, a collaborative writing platform.

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, both
by Xavier Dupré. Headlines and cover are set in Titling Gothic
by David Berlow.

This book was printed in the United States
using FSC certified Finch papers.

	Cover
	Title Page
	More from the A Book Apart Library
	Copyright
	Table of Contents
	Foreword
	Introduction
	1. Our Responsive Web
	2. The Flexible Grid
	3. Flexible Images
	4. Media Queries
	5. Becoming Responsive
	Acknowledgements
	Resources
	References
	Index
	About the Author
	About A Book Apart
	Colophon

